matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)Prozentuale Verbesserung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Statistik (Anwendungen)" - Prozentuale Verbesserung
Prozentuale Verbesserung < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Prozentuale Verbesserung: Bewertung einer Zahlenreihe
Status: (Frage) beantwortet Status 
Datum: 13:50 Di 01.05.2012
Autor: ThomasLehmann

Aufgabe
Jede Zahl der Reihe representiert eine Fehlerrate nach einem Training. Berechne die prozentuale Verbesserung auf Grund dieser Zahlenfolge.

Ich habe ein Programm geschrieben, mit dem man Rechenaufgaben gestellt bekommt. Es werden zudem Information wie Zeit, Erfolg/Fehler gespeichert. Ich möchte wissen um wieviel sich der User verbessert hat seitdem er trainiert: http://code.activestate.com/recipes/578111-learning-to-calculate/

Nehmen wir mal an ich habe eine Fehlerrate von 18%,
dann in unterschiedlichen Zeitabständen: 17%, 15%, 16%, 12%, 14%, 10%, ...

Von 18 auf 10 ist beinahe die Halbierung der Fehler, also bewegen wir uns um die 50% Verbesserung, richtig?

Doch es wäre hier nur eine Betrachtung des ersten und letzten Wertes. Ist das dann die korrekte Aussage? Schaut man auf die Beispiel Reihe würde ich dazu tendieren eine geringe Verbesserung als 50% zu nennen.

Ist das richtig und wenn ja wie berechnet man den richtigen Wert?



        
Bezug
Prozentuale Verbesserung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:37 Di 15.05.2012
Autor: luis52

Moin,

schau mal []hier.

vg Luis

Bezug
                
Bezug
Prozentuale Verbesserung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:41 Mo 28.05.2012
Autor: ThomasLehmann

Danke für die Antwort ... bleiben noch ein paar Fragen (dazu zuerst zwei Beispiele der Berechnung):

1) Geometrisches Mittel für die Fehlerrate 18%, 15%, 17%, 10%:
    gm = [mm] \wurzel[4]{18 \cdot 15 \cdot 17 \cdot 10} [/mm] = [mm] \wurzel[4]{45900} [/mm] = 14.6370370245%

    Was könnte ich daraus ableiten?
  
   a) Gegenüber dem ersten Wert: (gm - 18)/18 * 100 = -18,6831276417%,
      also eine Abnahme der Fehlerrate von etwa 18.7%.
   b) Gegenüber dem letzten Wert (10 - gm) / gm * 100 = -31.6801618848%,
      also eine Abnahme der Fehlerrate von etwa 31,7%

   Ok. scheint zu passen. Und ist einfacher als das zweite Bespiel.

2) Einfache lineare Regression für die gleiche Fehlerrate y (nach mühsamer Suche):
     sumX  = [mm] \summe_{}^{} [/mm] x = 10

     sumY  = [mm] \summe_{}^{} [/mm] y = 60

     sumXY = [mm] \summe_{x=1}^{4} [/mm] x [mm] \cdot [/mm] y = 139

     sumXX = [mm] \summe_{x=1}^{4} [/mm] x [mm] \cdot [/mm] x = 30

     sumYY = [mm] \summe_ [/mm] y [mm] \cdot [/mm] y = 938

     n     = 4
     r     = [mm] \frac{\summe_{}^{} xy - \frac{1}{n} \cdot \summe_{}^{} x \cdot \summe_{}^{} y}{\wurzel{(\summe_{}^{} x^2 - \frac{1}{n} \cdot (\summe_{}^{} x)^2} \cdot \wurzel{\summe_{}^{} y^2 - \frac{1}{n} \cdot (\summe_{}^{} y)^2}} [/mm]
     r     = [mm] \frac{139 - 0.25 \cdot 10 \cdot 60}{\wurzel{30 - 0.25 \cdot 100} \cdot \wurzel{938 - 0.25 \cdot 3600}} [/mm] = [mm] \frac{-11}{\wurzel{5} \cdot \wurzel{38}} [/mm] = [mm] \frac{-11}{13.7840487521} [/mm] = 0.79802387512


     Da es um eine Trend geht ist mit diesem Koeffizienten gegen 1 (oder -1) ein Zusammenhang zwischen x und y eindeutig hergestellt und somit kann die linear Funktion $y = a + b [mm] \cdot [/mm] x$ für die Trendlinie berechnet werden:

   b = [mm] \frac{\summe_{}^{} xy - \frac{\summe_{}^{} x \cdot \summe_{}^{} y}{n}}{\summe_{}^{} x^2 - \frac{(\summe_{}^{} x)^2}{n}} [/mm] = [mm] \frac{139 - \frac{10 \cdot 60}{4}}{30 - \frac{10^2}{4}} [/mm] = [mm] \frac{-11}{5} [/mm] = -2.2

   a = [mm] \frac{\summe_{}^{} y - b \cdot \summe_{}^{} x}{n} [/mm] = [mm] \frac{60 + 2.2 \cdot 10}{4} [/mm] = [mm] \frac{82}{4} [/mm] = 20.5

   Lineare Funktion: $y  = a + b [mm] \cdot [/mm] x = 20.5 - 2.2 [mm] \cdot [/mm] x$


   Gibt man jetzt für x die Werte 1 und 4 ein: y(1) = 18.4 und y(4) = 11.7.
   Vergleicht man die Werte: [mm] $\frac{11.7 - 18.4}{18.4} \cdot [/mm] 100 = -36.4130434783$%,
   also eine Abnahme der Fehlerrate von ca. 36.4%


Also nun die Fragen:
a) Welche Berechnung ist nun die bessere Lösung?
b) Wenn man mal eine Fehlerrate von 0% hatte dann ist im ersten Fall das Produkt immer Null. Wie würde man damit umgehen?



Bezug
                        
Bezug
Prozentuale Verbesserung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Mi 30.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                        
Bezug
Prozentuale Verbesserung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:09 Mi 30.05.2012
Autor: ThomasLehmann

Aufgabe
Ich haben nun zwei Wege um auf Prozentwerte zu kommen (und es gibt noch mehr):

  - arithemtisches Mittel
  - arithmetisches gewichtetes Mittel
  - geometrisches Mittel
  - geometrisches gewichtetes Mittel
  - harmonisches Mittel
  - harmonisches gewichtetes Mittel
  - median
  - einfache lineare Regression
  - quadratisches Mittel
  - ...

Also nun die Fragen:
a) Welche Berechnung ist nun die bessere Lösung?
b) Wenn man mal eine Fehlerrate von 0% hatte dann ist im geometrischen Mittel das Produkt immer Null. Wie würde man damit umgehen?
c) Das quadratische Mittel verstärkt größere Werte. Das ist natürlich unangenehm wenn es um die Abnahme einer Fehlerrate geht.

Mein Eindruck: die einfache lineare Regression scheint vielversprechend wenn auch der Rechen aufwand höher ist.

Grundsätzlich muss ich - wahrscheinlich - meine Testreihe ständig verschieben, also nur die letzten "n" Werte nehmen. Die Überlegung kam mir, weil ich mal bei der ersten Session keinen Fehler hatte aber zu langsam war. Jede weitere Session war zwar schneller aber hatte dann einen Fehler. Der Trend meint nun ständig ich wäre schlechter geworden obwohl ich manchmal auch wieder keine Fehler machte.

Mathematisch gesehen habe ich nun eine ganze Reihe von Ansätzen aber keiner konnte mir bisher überzeugend erklären wie man korrekt vorgeht.

Für ein paar Gedanken/Ideen eurerseits wäre ich sshe dankbar.

Grüße
Thomas

Bezug
                                
Bezug
Prozentuale Verbesserung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:23 Fr 01.06.2012
Autor: wieschoo


> Ich haben nun zwei Wege um auf Prozentwerte zu kommen (und
> es gibt noch mehr):
>
> - arithemtisches Mittel
> - arithmetisches gewichtetes Mittel

könnte ich mir vorstellen, wobei die letzten n Trainingseinheiten jeweil stärker gewichtet werden:
Training 1: Gewicht 1/S
Training 2: Gewicht 2/S
...
Training n: Gewicht n/S

mit S = 1+2+...+n

Vielleicht kannst du ja alle Trainingseinheiten einbeziehen

> - geometrisches Mittel
> - geometrisches gewichtetes Mittel

halte ich beide für nicht geeignet. Ein Durchlauf mit 0 Fehlern macht da alles kaputt.

> - harmonisches Mittel
> - harmonisches gewichtetes Mittel
> - median
> - einfache lineare Regression

Damit würdest du die Trendgröße ermitteln. Auch hier gibt es wieder z.B. die gewichtete Methode der kleinsten Quadrate

> - quadratisches Mittel
> - ...
> Also nun die Fragen:
> a) Welche Berechnung ist nun die bessere Lösung?

Das kann man nicht so beantworten.

> b) Wenn man mal eine Fehlerrate von 0% hatte dann ist im
> geometrischen Mittel das Produkt immer Null. Wie würde man
> damit umgehen?

Ja das wäre ein Problem (siehe unten mit Fehlerzeit)

> c) Das quadratische Mittel verstärkt größere Werte. Das
> ist natürlich unangenehm wenn es um die Abnahme einer
> Fehlerrate geht.
>
> Mein Eindruck: die einfache lineare Regression scheint
> vielversprechend wenn auch der Rechen aufwand höher ist.
>
> Grundsätzlich muss ich - wahrscheinlich - meine Testreihe
> ständig verschieben, also nur die letzten "n" Werte

Das mit den "gleitende Durchschnitte" habe ich oben geschrieben. Du kannst ja alle Daten nehmen und wichten. Machst du es wie oben, so erhält die erste Trainingseinheit immer weniger Einfluss.

> nehmen. Die Überlegung kam mir, weil ich mal bei der
> ersten Session keinen Fehler hatte aber zu langsam war.
> Jede weitere Session war zwar schneller aber hatte dann
> einen Fehler. Der Trend meint nun ständig ich wäre
> schlechter geworden obwohl ich manchmal auch wieder keine
> Fehler machte.

Ich würde mir über folgendes Gedanken machen:
Führt man zwei Statistiken (Zeit, Fehler) oder brummt man für jeden Fehler dem Anwender Zeit au?

>
> Mathematisch gesehen habe ich nun eine ganze Reihe von
> Ansätzen aber keiner konnte mir bisher überzeugend
> erklären wie man korrekt vorgeht.

Ich würde versuchen, das mit den Gewichten arithm. Mittel zu probieren.
Bei 2 Trainingseinheiten hast du
Gewicht Training
1/3        1
2/3        2

Bei 5 Trainingseinheiten
Gewicht Training
1/15      1
2/15      2
3/15      3
4/15      4
5/15      5

Du siehtst, dass das Training 1 im Verlauf immer weniger Einfluss hat. Nach n Trainingseinheiten hat es nur noch Einfluss [mm] 2/(n^2+n). [/mm]

>
> Für ein paar Gedanken/Ideen eurerseits wäre ich sshe
> dankbar.
>
> Grüße
> Thomas  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]