matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraProjektive Geometrie PG(V)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Projektive Geometrie PG(V)
Projektive Geometrie PG(V) < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Projektive Geometrie PG(V): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:53 Sa 29.04.2006
Autor: mathmetzsch

Aufgabe
Für welche [mm] n\in\IN [/mm] erfüllt [mm] PG(\IR^{n+1}) [/mm] das Axiom I5?

Hallo an Alle,

das Axiom I5 besagt, dass wenn 2 Ebenen einen Punkt gemeinsam haben, so haben sie noch mind. einen weiteren Punkt gemeinsam. Für mich ist die Antwort auf die Frage n=2. So sagt es mir jedenfalls meine Vorstellungskraft. Ich kann das aber nicht so recht begründen. Hat da vielleicht jemand ne Idee oder liege ich falsch?

Viele Grüße
Daniel

        
Bezug
Projektive Geometrie PG(V): Antwort
Status: (Antwort) fertig Status 
Datum: 20:43 So 30.04.2006
Autor: felixf


> Für welche [mm]n\in\IN[/mm] erfüllt [mm]PG(\IR^{n+1})[/mm] das Axiom I5?
>  Hallo an Alle,
>  
> das Axiom I5 besagt, dass wenn 2 Ebenen einen Punkt
> gemeinsam haben, so haben sie noch mind. einen weiteren
> Punkt gemeinsam. Für mich ist die Antwort auf die Frage
> n=2. So sagt es mir jedenfalls meine Vorstellungskraft. Ich
> kann das aber nicht so recht begründen. Hat da vielleicht
> jemand ne Idee oder liege ich falsch?

Zwei Ebenen $E, E'$ entsprechen zwei dreidimensionalen UVRen $U, U'$ von [mm] $\IR^{n+1}$. [/mm] Da $E [mm] \cap [/mm] E' [mm] \neq \emptyset$ [/mm] ist, ist [mm] $\dim [/mm] (U [mm] \cap [/mm] U') > 0$. Wenn du jetzt die Dimensionsformel [mm] $\dim [/mm] (U + V) = [mm] \dim [/mm] U + [mm] \dim [/mm] V - [mm] \dim [/mm] (U [mm] \cap [/mm] V)$ benutzt, bekommst du $n+1 [mm] \ge \dim(U [/mm] + V) = 3 + 3 - [mm] \dim(U \cap [/mm] V)$, also [mm] $\dim(U \cap [/mm] V) [mm] \ge [/mm] 3 + 3 - (n + 1) = 5 - n$.

Wenn also $5 - n [mm] \ge [/mm] 2$ (also $3 [mm] \le [/mm] n$) ist, dann haben zwei Ebenen $E, E'$ immer mehr als einen Schnittpunkt.

Wenn jetzt $n > 3$ ist, so musst du zeigen, dass es dreidimensionale Untervektorraeume $U, U' [mm] \subseteq \IR^{n+1}$ [/mm] gibt mit [mm] $\dim [/mm] (U [mm] \cap [/mm] V) = 1$.

Sei also $n > 3$ und [mm] $e_0, \dots, e_n$ [/mm] die Standardeinheitsvektoren von [mm] $\IR^{n+1}$. [/mm] Betrachte $U = [mm] \langle e_0, e_1, e_2 \rangle$, [/mm] $V = [mm] \langle e_2, e_3, e_4 \rangle$. [/mm] Dann ist $U [mm] \cap [/mm] V = [mm] \langle e_2 \rangle$, [/mm] also [mm] $\dim [/mm] (U [mm] \cap [/mm] V) = 1$.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]