matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungProduktintegration
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differenzialrechnung" - Produktintegration
Produktintegration < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Produktintegration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:02 Di 15.01.2008
Autor: RedWing

Hallo,
ich hab ein Problem folgende Funktion abzuleiten:
f(x)= 2*(1/sqrt(x) - sqrt(x)) * e^-0,5*x

Als Ergebnis soll man erhalten:
f'(x)= [mm] ((x^2-2*x-1)/x^{3/2} [/mm] ) *e^-0,5*x

Ich hab es schon mit Produktintegration versucht, komme aber leider nicht weiter :(
Hat jemand eine Idee, wie man auf die Ableitung kommt? Für Hilfe wäre ich sehr dankbar :)

        
Bezug
Produktintegration: Antwort
Status: (Antwort) fertig Status 
Datum: 17:17 Di 15.01.2008
Autor: M.Rex

Hallo

Die Idee mit der Produktregel ist schon völlig richtig.

Es wäre super, wenn du auch deine Ansätze mitgegeben hättest.

Also:

[mm] f(x)=\left(\green{\bruch{2}{\wurzel{x}}-2\wurzel{x}}\right)*\red{e^{-\bruch{1}{2}x}}, [/mm] richtig?

Somit:

[mm] f'(x)=\left[\red{-\bruch{1}{2}e^{-\bruch{1}{2}x}}*\left(\green{\bruch{2}{\wurzel{x}}-2\wurzel{x}}\right)\right]+\left[\red{e^{-\bruch{1}{2}x}}\left(\green{2*\bruch{-3}{2}x^{\bruch{-3}{2}}-\bruch{2}{2\wurzel{x}}}\right)\right] [/mm]

Wenn du das jetzt noch ein wenig vereinfachst, sollte das Ergebnis herauskommen

Marius

Bezug
                
Bezug
Produktintegration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:37 Di 15.01.2008
Autor: Steffi21

Hallo Marius, ein kleiner Schreibfehler hat sich eingeschlichen, die 3 im Zähler der zweiten runden Klammer:

[mm] f'(x)=\left[\red{-\bruch{1}{2}e^{-\bruch{1}{2}x}}\cdot{}\left(\green{\bruch{2}{\wurzel{x}}-2\wurzel{x}}\right)\right]+\left[\red{e^{-\bruch{1}{2}x}}\left(\green{2\cdot{}\bruch{-1}{2}x^{\bruch{-3}{2}}-\bruch{2}{2\wurzel{x}}}\right)\right] [/mm]

Steffi

Bezug
                        
Bezug
Produktintegration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:49 Di 15.01.2008
Autor: M.Rex

Hallo Steffi

Danke für den Hinweis

Marius

Bezug
                
Bezug
Produktintegration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:49 Di 15.01.2008
Autor: RedWing

Hi, ja die FUnktion war richtig, was ich aber nich verstehe bei deiner Ableitung ist, warum 2/sqrt(x) abgeleitet -3/2*x^(-3/2) ergibt.

Müsste da nicht -1/2*x^(-3/2) rauskommen?

Ansonsten hab ich es genauso abgeleitet wie du. Aber ich verstehe nicht, wie die das vereinfacht haben, dass man so ein Ergebnis erhält, was ich als erstes gepostet habe. :(

Bezug
                        
Bezug
Produktintegration: Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 Di 15.01.2008
Autor: M.Rex

Hallo

> Hi, ja die FUnktion war richtig, was ich aber nich verstehe
> bei deiner Ableitung ist, warum 2/sqrt(x) abgeleitet
> -3/2*x^(-3/2) ergibt.
>  
> Müsste da nicht -1/2*x^(-3/2) rauskommen?

Tut es auch, siehe Steffis Mitteilung

>  
> Ansonsten hab ich es genauso abgeleitet wie du. Aber ich
> verstehe nicht, wie die das vereinfacht haben, dass man so
> ein Ergebnis erhält, was ich als erstes gepostet habe. :(


$ [mm] f'(x)=\left[\red{-\bruch{1}{2}e^{-\bruch{1}{2}x}}\cdot{}\left(\green{\bruch{2}{\wurzel{x}}-2\wurzel{x}}\right)\right]+\left[\red{e^{-\bruch{1}{2}x}}\left(\green{2\cdot{}\bruch{-1}{2}x^{\bruch{-3}{2}}-\bruch{2}{2\wurzel{x}}}\right)\right] [/mm] $
[mm] =e^{\bruch{1}{2}x}*\left[-\bruch{1}{2}*\left(\bruch{2}{\wurzel{x}}-2\wurzel{x}\right)+\left(-1x^{\bruch{-3}{2}}-\bruch{1}{1\wurzel{x}}\right)\right] [/mm]
[mm] =e^{\bruch{1}{2}x}*\left(\red{\bruch{-1}{\wurzel{x}}}+\blue{\wurzel{x}}-\green{\bruch{1}{x^{\bruch{3}{2}}}}-\red{\bruch{1}{\wurzel{x}}}\right) [/mm]
[mm] =e^{\bruch{1}{2}x}*\left(\red{\bruch{-2}{\wurzel{x}}}+\blue{\bruch{x}{\wurzel{x}}}-\green{\bruch{1}{x\wurzel{x}}}\right) [/mm]
[mm] =e^{\bruch{1}{2}x}*\left(\bruch{-2x}{x\wurzel{x}}+\bruch{x²}{x\wurzel{x}}-\bruch{1}{x\wurzel{x}}\right) [/mm]
[mm] =e^{\bruch{1}{2}x}*\left(\bruch{-2x+x²-1}{x\wurzel{x}}\right) [/mm]
[mm] =e^{\bruch{1}{2}x}*\left(\bruch{x²-2x-1}{x^{\bruch{3}{2}}}\right) [/mm]

Marius

Bezug
                                
Bezug
Produktintegration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:09 Di 15.01.2008
Autor: RedWing

Ok danke :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]