matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungProduktintegration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Produktintegration
Produktintegration < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Produktintegration: Aufgaben!Ergebnisse
Status: (Frage) beantwortet Status 
Datum: 20:53 Do 16.03.2006
Autor: Desperado

Hallo,

Ich habe hier einige Aufgaben zur Produktintegration gerechnet und würde gerne wissen ob das Ergebnis stimmt.

1.

[mm] \integral_{0}^{0,5}{4x * e^{2x+1} dx} [/mm]

2.

[mm] \integral_{1}^{e^2}{2*\ln(x) dx} [/mm]



Alles wird mit der Produktintegrations - Formel berechnet!

Also würde mich sehr um eine Antwort freuen!


Danke im vorraus

Desperado

        
Bezug
Produktintegration: Deine Ergebnisse?
Status: (Antwort) fertig Status 
Datum: 21:01 Do 16.03.2006
Autor: Loddar

Hallo Desperado!


Wie lauten denn Deine Ergenisse bzw. Deine Zwischenschritte? Dann können wir das viel besser kontrollieren.


Oder reichen Dir die Ergebnisse mit [mm] $I_1 [/mm] \ = \ e \ [mm] \approx [/mm] \ 2.718$ bzw. [mm] $I_2 [/mm] \ = \ [mm] 2*e^2+2 [/mm] \ [mm] \approx [/mm] \ 16.778$ ?


Gruß
Loddar


Bezug
                
Bezug
Produktintegration: zwischenschritte
Status: (Frage) beantwortet Status 
Datum: 21:13 Do 16.03.2006
Autor: Desperado

Hallo,
also zu   [mm] \integral_{0}^{0,5}{f(x) dx} [/mm] 4x*e^2x+1


u(x)=4x
u´(x)=4
v´(x)=e^2x+1
V(x)=1/2e^2x+1


[mm] \integral_{0}^{0,5}{f(x) dx} [/mm] 4x*e^2x+1 = [4x * 1/2e^2x+1]  grenzen a=0 ,b=0,5  -  [mm] \integral_{0}^{0,5}{f(x) dx} [/mm] 4*1/2e^2x+1

[mm] =[4*0,5*1/2e^2] [/mm] - 0 - [mm] [4*1/2e^2] [/mm] - 0 = 7,39

hoffe das du das lesen kannst,

Desperado

Bezug
                        
Bezug
Produktintegration: Antwort
Status: (Antwort) fertig Status 
Datum: 23:22 Do 16.03.2006
Autor: Bastiane

Hallo!

> Hallo,
>  also zu   [mm]\integral_{0}^{0,5}{f(x) dx}[/mm] 4x*e^2x+1

Komisch, in deinem ersten Post sahen deine Formeln wesentlich besser aus...
  

> u(x)=4x
> u´(x)=4
>  v´(x)=e^2x+1
>  V(x)=1/2e^2x+1
>  
> [mm]\integral_{0}^{0,5}{f(x) dx}[/mm] 4x*e^2x+1 = [4x * 1/2e^2x+1]  
> grenzen a=0 ,b=0,5  -  [mm]\integral_{0}^{0,5}{f(x) dx}[/mm]
> 4*1/2e^2x+1

Bis hierhin scheint es noch zu stimmen, aber wie du dann eingesetzt hast, ist mir ein Rätsel. [kopfkratz]
  

> [mm]=[4*0,5*1/2e^2][/mm] - 0 - [mm][4*1/2e^2][/mm] - 0 = 7,39

Also, ich habe dann da stehen: [mm] =e^2-[e^{2x+1}]_0^{0,5}=e^2-e^2-e^1=-e. [/mm]
  

> hoffe das du das lesen kannst,

Naja, mit dem Formeleditor wär's besser. ;-)

Viele Grüße
Bastiane
[cap]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]