matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraProdukt von Ideale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Produkt von Ideale
Produkt von Ideale < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Produkt von Ideale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:02 Sa 17.12.2005
Autor: mathmetzsch

Aufgabe
Man zeige, dass im Ring [mm] \IZ[\wurzel{-3}] [/mm] für das Ideal [mm] a=(2,1+\wurzel{-3}) [/mm] gilt [mm] a^{2}=(2)*a [/mm] und [mm] (2)\not=a. [/mm]

[mm] \IZ[\wurzel{-3}]=(a+b\wurzel{-3}) [/mm] für [mm] a,b\in\IZ [/mm]

Also, ich hätte dazu erst mal das Produkt ausgerechnet. Dann müsste ja gelten:

a*a
[mm] =(2,1+\wurzel{-3})(2,1+\wurzel{-3}) [/mm]
[mm] =(4,2+2\wurzel{-3},-2+2\wurzel{-3}) [/mm]
[mm] =(4,2+2\wurzel{-3},4) [/mm]

Kann ich jetzt hier schon sehen, dass das (2)*a ist? Ich sehe nämlich nichts. Oder habe ich mich verrechnet?

Die (2) ist doch so definiert oder: [mm] (2)=2*\IZ[\wurzel{-3}]=(2a+2b\wurzel{-3}) [/mm]

Um das das zweite zu zeigen müsste ich ja nur ein Element finden, das in (2) ist und nicht in a oder anders herum.

Könnte das z.B., wenn ich a=b=0 setze, ist (2)=0, aber [mm] a\not=0. [/mm]

Stimmt das so? Bitte um Hilfe!

Viele Grüße
Daniel

        
Bezug
Produkt von Ideale: Antwort
Status: (Antwort) fertig Status 
Datum: 11:55 Sa 17.12.2005
Autor: Leopold_Gast

[mm]\mathfrak{a} = (2,1 + \sqrt{-3})[/mm] wird von 2 und [mm]1 + \sqrt{-3}[/mm] erzeugt. Dann wird [mm]\mathfrak{a}^2[/mm] von allen möglichen Produkten der Erzeugenden erzeugt. Das sind

[mm]u = 2 \cdot 2 = 4[/mm]
[mm]v = 2 \cdot \left( 1 + \sqrt{-3} \right) = 2 + 2 \sqrt{-3}[/mm]
[mm]w = \left( 1 + \sqrt{-3} \right) \left( 1 + \sqrt{-3} \right) = -2 + 2 \sqrt{-3}[/mm]

Nun gilt aber [mm]w = v - u[/mm], und damit ist [mm]w[/mm] überflüssig, denn bereits [mm]u,v[/mm] erzeugen [mm]\mathfrak{a}^2[/mm]:

[mm]\mathfrak{a}^2 = (4 , 2 + 2 \sqrt{-3} )[/mm]

Um nun [mm](2) \neq \mathfrak{a}[/mm] zu zeigen, beachte, daß wegen [mm]2 \in \mathfrak{a}[/mm] auf jeden Fall [mm](2) \subseteq \mathfrak{a}[/mm] gilt. Du mußt daher zeigen, daß [mm]\mathfrak{a} \not \subset (2)[/mm] gilt. Dazu mußt du nur ein einziges Element finden, das in [mm]\mathfrak{a}[/mm], aber nicht in [mm](2)[/mm] liegt. Das liegt aber auf der Hand.

Bezug
                
Bezug
Produkt von Ideale: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:48 Sa 17.12.2005
Autor: mathmetzsch

Vielen Dank! Jetzt ist mir das um einiges klarer!

Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]