matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVK 22: Algebra 2007Produkt der Permutation...
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "VK 22: Algebra 2007" - Produkt der Permutation...
Produkt der Permutation... < VK 22: Algebra 2007 < Universität < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "VK 22: Algebra 2007"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Produkt der Permutation...: Idee
Status: (Frage) beantwortet Status 
Datum: 18:55 Do 01.11.2007
Autor: DreamaMM

Aufgabe
Beweisen Sie, dass sich jedes Element von s3 der Permutationen [mm] \pmat{1&2&3\\2&1&3} [/mm] und [mm] \pmat{1&2&3\\3&2&1} [/mm] schreiben lässt.

Alsoooo,

ich habe die sechs Elemente von S3 gebildet:

123   132   213   231   312   321

und ich weiß auch, dass die Produkte der beiden Permutationen

[mm] \pmat{1&2&3\\2&1&3} [/mm] * [mm] \pmat{1&2&3\\3&2&1} [/mm] = [mm] \pmat{1&2&3\\3&1&2} [/mm] und
[mm] \pmat{1&2&3\\3&2&1} [/mm] * [mm] \pmat{1&2&3\\2&1&3} [/mm] = [mm] \pmat{1&2&3\\1&2&3} [/mm]

sind.

Jetzt habe ich allerdings keinen Ansatz, wie ich weiter vorgehen soll...




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Produkt der Permutation...: Antwort
Status: (Antwort) fertig Status 
Datum: 07:47 Fr 02.11.2007
Autor: koepper

Guten Morgen,

> Beweisen Sie, dass sich jedes Element von s3 der
> Permutationen [mm]\pmat{1&2&3\\2&1&3}[/mm] und [mm]\pmat{1&2&3\\3&2&1}[/mm]
> schreiben lässt.
>  Alsoooo,
>  
> ich habe die sechs Elemente von S3 gebildet:
>  
> 123   132   213   231   312   321
>
> und ich weiß auch, dass die Produkte der beiden
> Permutationen
>  
> [mm]\pmat{1&2&3\\2&1&3}[/mm] * [mm]\pmat{1&2&3\\3&2&1}[/mm] =  [mm]\pmat{1&2&3\\3&1&2}[/mm] und

OK.

>  [mm]\pmat{1&2&3\\3&2&1}[/mm] * [mm]\pmat{1&2&3\\2&1&3}[/mm] =  [mm]\pmat{1&2&3\\1&2&3}[/mm]

Rechne bitte nochmal nach.

>
> sind.
>  
> Jetzt habe ich allerdings keinen Ansatz, wie ich weiter
> vorgehen soll...

aus den erzeugten Permutationen durch Verknüpfungen weitere erzeugen.

Gruß
Will

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "VK 22: Algebra 2007"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]