matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenProdukt absolut konvergent ?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Produkt absolut konvergent ?
Produkt absolut konvergent ? < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Produkt absolut konvergent ?: Bitte um Kontrolle
Status: (Frage) beantwortet Status 
Datum: 16:09 Mi 09.12.2015
Autor: pc_doctor

Aufgabe
Es sei( [mm] \summe_{k=1}^{n} a_k )_{n \in \IN} [/mm] eine absolut konvergente Reihe und [mm] (c_k)_{k \in \IN} [/mm] eine konvergente Folge reeller Zahlen. Zeigen Sie, dass die Reihe ( [mm] \summe_{k=1}^{n} a_k c_k )_{n \in \IN} [/mm] absolut konvergiert.

Hallo, mein Ansatz:

weil [mm] c_k [/mm] konvergiert , ist [mm] c_k [/mm] beschränkt.

also: [mm] \exists [/mm] M > 0 mit [mm] |c_k| \le [/mm] M für jedes k

Dann ist [mm] |a_k [/mm] * [mm] c_k [/mm] | [mm] \le [/mm] M [mm] |a_k| [/mm]

Die Reihe [mm] \summe_{}^{} M|a_k| [/mm] ist aber konvergent.

Nach dem Majorantenkriterium ist doch dann auch [mm] |a_k [/mm] * [mm] c_k| [/mm] konvergent.

Ich bitte um Kontrolle/Ergänzung.



        
Bezug
Produkt absolut konvergent ?: Antwort
Status: (Antwort) fertig Status 
Datum: 16:22 Mi 09.12.2015
Autor: schachuzipus

Hallo Doc,

> Es sei( [mm]\summe_{k=1}^{n} a_k )_{n \in \IN}[/mm] eine absolut
> konvergente Reihe und [mm](c_k)_{k \in \IN}[/mm] eine konvergente
> Folge reeller Zahlen. Zeigen Sie, dass die Reihe (
> [mm]\summe_{k=1}^{n} a_k c_k )_{n \in \IN}[/mm] absolut
> konvergiert.
> Hallo, mein Ansatz:

>

> weil [mm]c_k[/mm] konvergiert , ist [mm]c_k[/mm] beschränkt. [ok]

>

> also: [mm]\exists[/mm] M > 0 mit [mm]|c_k| \le[/mm] M für jedes k

>

> Dann ist [mm]|a_k[/mm] * [mm]c_k[/mm] | [mm]\le[/mm] M [mm]|a_k|[/mm] [ok]

>

> Die Reihe [mm]\summe_{}^{} M|a_k|[/mm] ist aber konvergent. [ok]

>

> Nach dem Majorantenkriterium ist doch dann auch [mm]|a_k[/mm] * [mm]c_k|[/mm]
> konvergent.

Du meinst die Reihe [mm]\sum\limits_{k\ge 0} |a_kc_k|[/mm]

>

> Ich bitte um Kontrolle/Ergänzung.

Schaut gut aus!

Gruß

schachuzipus

Bezug
                
Bezug
Produkt absolut konvergent ?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:32 Mi 09.12.2015
Autor: pc_doctor

Alles klar, vielen lieben Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]