matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenProblem bei DGL 1. Ordnung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Problem bei DGL 1. Ordnung
Problem bei DGL 1. Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Problem bei DGL 1. Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:11 Di 26.10.2010
Autor: mero

Aufgabe
[mm] x^2y'=\bruch{1}{4}x^2+y^2 [/mm]  

[mm] y'=\bruch{1}{4}+(\bruch{y}{x})^2 [/mm]

[mm] u=\bruch{y}{x} [/mm]
y=u*x
y'=u'*x+u

einsetzten

[mm] u'*x+u=\bruch{1}{4}+u^2 [/mm]

Trennung der Variablen:

[mm] \bruch{du}{dx}x=\bruch{1}{4}+u^2-u [/mm]

[mm] 4du=(u^2-u)\bruch{dx}{x} [/mm]

[mm] 4\bruch{du}{u^2-u}=\bruch{dx}{x} [/mm]

Integral:

4*LN(u-1)-LN(u)=LN(x)+LN(C)

[mm] 4*LN(\bruch{u-1}{u})=LN(x+C) [/mm]
Ln auflösen

[mm] 4*\bruch{u-1}{u}=x+C [/mm]

Hallo,

irgendwie ist es zeit für mich heute beim lernen aufzuhören. ich steh auf dem schlauch.

ich komme nun irgendwie mit dem auflösen nicht weiter, ist das so richtig, oder habe ich zwischendurch einen fehler gemacht?

        
Bezug
Problem bei DGL 1. Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:20 Di 26.10.2010
Autor: Herby

Hi,

> [mm]x^2y'=\bruch{1}{4}x^2+y^2[/mm]
>
> [mm]y'=\bruch{1}{4}+(\bruch{y}{x})^2[/mm]
>
> [mm]u=\bruch{y}{x}[/mm]
> y=u*x
> y'=u'*x+u
>
> einsetzten
>
> [mm]u'*x+u=\bruch{1}{4}+u^2[/mm]
>
> Trennung der Variablen:
>
> [mm]\bruch{du}{dx}x=\bruch{1}{4}+u^2-u[/mm]
>
> [mm]4du=(u^2-u)\bruch{dx}{x}[/mm]

so geht das aber nicht mit dem [mm] \frac14 [/mm] ;-)


LG
Herby

Bezug
                
Bezug
Problem bei DGL 1. Ordnung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:27 Di 26.10.2010
Autor: mero

oh gott!
naütrlich

[mm] 4du=4(u^2-u)*\bruch{dx}{x} [/mm]

=>

[mm] \bruch{du}{u^2-u}=\bruch{dx}{x} [/mm]


das sieht so besser aus, oder?
(definitiv die letzte aufgabe für heute =))

Danke!

Bezug
                        
Bezug
Problem bei DGL 1. Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:30 Di 26.10.2010
Autor: Herby



   [haee]

Bezug
                        
Bezug
Problem bei DGL 1. Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:39 Di 26.10.2010
Autor: fred97


> oh gott!
>  naütrlich
>  
> [mm]4du=4(u^2-u)*\bruch{dx}{x}[/mm]
>  
> =>
>  
> [mm]\bruch{du}{u^2-u}=\bruch{dx}{x}[/mm]
>  
>
> das sieht so besser aus, oder?

Ja und jetzt integrieren

Ich nehme alles zurück !

FRED


>  (definitiv die letzte aufgabe für heute =))
>  
> Danke!


Bezug
                                
Bezug
Problem bei DGL 1. Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:57 Di 26.10.2010
Autor: Herby

Hallo,

ich will euch ja nicht ärgern, aber müsste es nicht eigentlich:

[mm] 4u'x=\red{1}+4(u^2-u) [/mm] heißen?


LG
Herby

Bezug
                        
Bezug
Problem bei DGL 1. Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:50 Di 26.10.2010
Autor: mero

(:

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]