matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgorithmen und DatenstrukturenPrimitive Rekursion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algorithmen und Datenstrukturen" - Primitive Rekursion
Primitive Rekursion < Algor.+Datenstr. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primitive Rekursion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 04:31 Di 01.05.2012
Autor: yangwar1

Aufgabe
Zeigen Sie, dass das Prädikat P = {n [mm] \in \IN [/mm] | n ist gerade} primitiv rekursiv ist. Geben Sie dazu eine primitiv rekursive Darstellung der charakteristischen Funktion [mm] X_p(n)=\begin{cases} 0, & \mbox{falls } n \mbox{ sonst} \\ 1, & \mbox{falls n gerade} \end{cases} [/mm]

Ich glaubte zuerst eine primiiv rekursive Darstellung zu haben. Leider darf bei der primitiven Rekursivität nur ein Basisfall angegeben werden.
Ich habe noch Probleme damit, auseinanderzuhalten, was ein Basisfall ist.
Ich schreibe einfach mal meinen jetzigen Lösungsansatz auf:
[mm] X_p(n)=X_p(sub(n,2)) [/mm]
[mm] X_p(1)=1-X_p(0) [/mm]
[mm] X_p(0)=1 [/mm]

Erklärung. Ein gegebenes n führe ich zunächst auf die Berechnung von [mm] X_p(n-2) [/mm] zurück bzw. sage, dass hier Gleichheit herrscht. Wenn n ungerade ist, dann wird es irgendwann 1. Also wird [mm] X_p(1) [/mm] aufgerufen und dann [mm] X_p(0). [/mm] Da das 1 ist, kommt 0 heraus.

Frage: Sind dies nun zwei Basisfälle?

        
Bezug
Primitive Rekursion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 05:21 Do 03.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]