Primfaktorzerlegung v. Polynom < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Bestimmen Sie die eindeutige Primfaktorzerlegung von
[mm] a(x)=x^{5}+x^{4}+1
[/mm]
in dem Polynomring [mm] \IZ_{2}. [/mm] |
Hallo.
Kann mir jemand sagen, wie ich da am besten vorgehe? Ich habe vieles ausprobiert (z.B. Polynomdivisionen durch einige Polynome), aber nix hat geklappt. Auch als ich rückwärts versucht habe durch Primfaktoren a(x) zu erstellen, hat es nicht recht geklappt, z.B. durch mehreres Anwenden von [mm] (x+1)(x+1)=x^{2}+1.
[/mm]
Bitte um Ratschlag!
Lg
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
sorry, dieses Thema sollte in den Bereich Hochschule-> Algebra.
Weiß nicht wie man es dorthin verschiebt.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 04:21 Mi 05.11.2008 | Autor: | Fry |
Hallo,
Sei [mm] f=X^{5}+X^{4}+1.
[/mm]
da ja die Primfaktorzerlegung in [mm] \IZ_{2}[X] [/mm] suchst, ist es hilfreich die Primelemente von [mm] \IZ_{2}[X] [/mm] = Irreduzible Polynome in [mm] \IZ_{2}[X] [/mm] (da [mm] \IZ_{2}[X] [/mm] Hauptidealring) zu kennen. Z.B. sind ja die Polynome ersten Grades immer irreduzibel in K[X], K Körper.
Jedoch hat das Polynom keine Nullstelle in [mm] \IZ_{2}, [/mm] also kann auch kein Linearfaktor der Art (X-a) abgespalten werden, also [mm] f\not= [/mm] (X-a)*g, wobei a Nullstelle und grad g=4.
D.h. wenn man eine Zerlegung von f=g*h in irreduzible Elemente g,h hat, dann kann nur noch grad g=2 und grad h=3 sein (da ja der Fall grad g=1 und grad h =4 ausgeschlossen wurde)
Außerdem kann man sagen, dass ein Polynom 2. oder 3.Grades in K[X] irreduzibel ist gdw. das Polynom keine Nullstellen in K hat. Auf diese Weise findet man heraus, dass g=X²+X+1 das einzige irreduzible Polynom 2.Grades in [mm] \IZ_{2}[X] [/mm] ist. Wenn du nun Polynomdivision von f mit g machst, bekommst du: [mm] X^{5}+X^{4}+1 [/mm] = [mm] (X^2+X+1)(X^3-X+1)
[/mm]
Jetzt musst du nur noch zeigen, dass [mm] X^3-X+1 [/mm] irreduzibel in [mm] \IZ_{2}[X] [/mm] ist....
VG
Christian
|
|
|
|