Potenzreihen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei T = [mm] \partial D_{1}(0). [/mm] Für [mm] n\in\IN [/mm] definieren wir
[mm] f_{n}:\IC [/mm] \ [mm] T->\IC, z\mapsto z^{2hochn}(z^{2hochn+1}-1)^{-1}.
[/mm]
Zeigen Sie, dass die Reihe [mm] \summe_{n=0}^{\infty}f_n [/mm] für jedes [mm] r\in \IR [/mm] mit 0<r<1 auf [mm] D_r(0) [/mm] und für jedes [mm] R\in\IR [/mm] mit R>1 auf [mm] \IC [/mm] \ [mm] D_R(0) [/mm] gleichmäßig konvergiert. |
Hallo,
ich würde diese Aufgabe sehr gerne mit dem Weierstraßschen Majorantenkriterium lösen. Ich habe nun aber irgendwie scheinbar ein Verständnisproblem und zwar weiß ich absolut nicht, wie ic den Betrag von fn abschätzen kann gegen eine Folge...das erwehrt sich meinem Verständnis irgendwie..kann mir vllcht jemand helfen? Danke...
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:53 Fr 07.05.2010 | Autor: | rainerS |
Hallo!
> Sei T = [mm]\partial D_{1}(0).[/mm] Für [mm]n\in\IN[/mm] definieren wir
> [mm]f_{n}:\IC[/mm] \ [mm]T->\IC, z\mapsto z^{2^n}(z^{2^{n+1}}-1)^{-1}.[/mm]
>
> Zeigen Sie, dass die Reihe [mm]\summe_{n=0}^{\infty}f_n[/mm] für
> jedes [mm]r\in \IR[/mm] mit 0<r<1 auf [mm]D_r(0)[/mm] und für jedes [mm]R\in\IR[/mm]
> mit R>1 auf [mm]\IC[/mm] \ [mm]D_R(0)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
gleichmäßig konvergiert.
> Hallo,
> ich würde diese Aufgabe sehr gerne mit dem
> Weierstraßschen Majorantenkriterium lösen. Ich habe nun
> aber irgendwie scheinbar ein Verständnisproblem und zwar
> weiß ich absolut nicht, wie ic den Betrag von fn
> abschätzen kann gegen eine Folge...das erwehrt sich meinem
> Verständnis irgendwie..kann mir vllcht jemand helfen?
Dividiere in dem Bruch Zähler und Nenner durch $z^{2^n}}$:
[mm] f_n(z) = \bruch{z^{2^n}}{z^{2^{n+1}}-1} = \bruch{1}{z^{2^n}-z^{-2^n}} [/mm] .
Um Zahlen [mm] $M_n$ [/mm] zu finden, die
[mm] \left|\bruch{1}{z^{2^n}-z^{-2^n}}\right| \le M_n [/mm]
erfüllen, betrachte den Kehrwert, suche also Zahlen [mm] $K_n$ [/mm] mit
[mm] K_n \ge \left| z^{2^n}-z^{-2^n} \right| = \left|z^{2^n} - \bruch{1}{z^{2^n}} \right| [/mm].
Viele Grüße
Rainer
|
|
|
|
|
Ja, nur, dass was mich grundsätzlich irritiert ist die Tatsache, dass ich eine Folge finden soll, in der das z ja nicht mehr vorkommt oder?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:09 Fr 07.05.2010 | Autor: | rainerS |
Hallo!
> Ja, nur, dass was mich grundsätzlich irritiert ist die
> Tatsache, dass ich eine Folge finden soll, in der das z ja
> nicht mehr vorkommt oder?
Richtig, und zwar getrennt für die Fälle $|z| < r < 1$ und $|z| > R > 1$.
Schätze geschickt ab!
Viele Grüße
Rainer
|
|
|
|
|
Ich glaub, ich steh echt auf dem Schlauch. Ich hab bisher: für |z|<r<1:
[mm] |z^{2^{n}}-\bruch{1}{z^{2^{n}}}| \ge |0-\bruch{1}{z^{2^{n}}} |=|\bruch{1}{z^{2^{n}}}|\ge \bruch{1}{n^{2}}.
[/mm]
Ich bin aber total unsicher, soll das r in der Abschätzung noch vorkommen? Und für die andre Abschätzung krieg ich irgendwie auch gar nix hin...
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:35 Sa 08.05.2010 | Autor: | rainerS |
Hallo!
> Ich glaub, ich steh echt auf dem Schlauch. Ich hab bisher:
> für |z|<r<1:
> [mm]|z^{2^{n}}-\bruch{1}{z^{2^{n}}}| \ge |0-\bruch{1}{z^{2^{n}}} |=|\bruch{1}{z^{2^{n}}}|\ge \bruch{1}{n^{2}}.[/mm]
>
> Ich bin aber total unsicher, soll das r in der Abschätzung
> noch vorkommen? Und für die andre Abschätzung krieg ich
> irgendwie auch gar nix hin...
Überleeg doch mal: wenn $|z|<r$ ist, was folgt dann für [mm] $|z^{2^{n}}|$, [/mm] und was für [mm] $\left|\bruch{1}{z^{2^{n}}}\right|$ [/mm] ? Und wenn du das hast, musst du noch per Dreiecksungleichung den Ausdruck
[mm] \left|z^{2^{n}}-\bruch{1}{z^{2^{n}}}\right| [/mm]
durch die anderen beiden abschätzen.
Und was folgt aus $|z|>R$ für [mm] $|z^{2^{n}}|$ [/mm] und [mm] $\left|\bruch{1}{z^{2^{n}}}\right|$ [/mm] ?
Viele Grüße
Rainer
|
|
|
|
|
Vielen dank für deine hilfe ;) das is echt lieb von dir, ich weiß auch nicht woran das liegt, dass dieses we gar nix klappen will...
Okay, ja: [mm] |z^{2^{n}}-\bruch{1}{z^{2^{n}}} [/mm] | [mm] \le |z^{2^{n}}|+ |\bruch{1}{z^{2^{n}}} [/mm] | [mm] \le |r^{2^{n}}|+ |\bruch{1}{z^{2^{n}}} [/mm] |
das problem, dass ich hier halt hab, liegt dadrin, dass darin, dass sich [mm] |\bruch{1}{z^{2^{n}}} [/mm] | nur durch größer abschätzen lässt, ich will aber eine folge haben, die größer ist und nicht kleiner...
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:56 Sa 08.05.2010 | Autor: | rainerS |
Hallo!
> Vielen dank für deine hilfe ;) das is echt lieb von dir,
> ich weiß auch nicht woran das liegt, dass dieses we gar
> nix klappen will...
>
> Okay, ja: [mm]|z^{2^{n}}-\bruch{1}{z^{2^{n}}} | \le |z^{2^{n}}|+ |\bruch{1}{z^{2^{n}}} | \le |r^{2^{n}}|+ |\bruch{1}{z^{2^{n}}} |[/mm]
>
> das problem, dass ich hier halt hab, liegt dadrin, dass
> darin, dass sich [mm]|\bruch{1}{z^{2^{n}}}[/mm] | nur durch größer
> abschätzen lässt, ich will aber eine folge haben, die
> größer ist und nicht kleiner...
Nein, kleiner! Lies nochmal meinen ersten Post: du willst
[mm] \bruch{1}{|z^{2^{n}}-z^{-2^{n}}|} [/mm]
nach oben abschätzen, also den Kehrwert nach unten:
[mm]\left|z^{2^{n}}-\bruch{1}{z^{2^{n}}}\right| \ge \left| |z^{2^{n}}| - \left|\bruch{1}{z^{2^{n}}}\right| \,\right| [/mm]
Da $|z|<r< 1$ ist, ist dies
[mm] = \bruch{1}{|z|^{2^{n}}} - |z|^{2^{n}} > \bruch{1}{|z|^{2^{n}}}} -1[/mm] .
Viele Grüße
Rainer
|
|
|
|
|
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
kurze Nachfrage: Ist nicht hier schon ein Fehler
Dividiere in dem Bruch Zähler und Nenner durch $ z^{2^n}} $:
$ f_n(z) = \bruch{z^{2^n}}{z^{2^{n+1}}-1} = \bruch{1}{z^{2^n}-z^{-2^n}} $ . Weil wenn ich Zähler und Nenner dadurch dividiere, steht doch im Nenner bei dem ersten Term der Summe z^{2} und nicht z^{2^{n}} oder?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:59 So 09.05.2010 | Autor: | rainerS |
Hallo!
> kurze Nachfrage: Ist nicht hier schon ein Fehler
>
> Dividiere in dem Bruch Zähler und Nenner durch [mm]z^{2^n}} [/mm]:
>
> [mm]f_n(z) = \bruch{z^{2^n}}{z^{2^{n+1}}-1} = \bruch{1}{z^{2^n}-z^{-2^n}}[/mm]
> . Weil wenn ich Zähler und Nenner dadurch dividiere, steht
> doch im Nenner bei dem ersten Term der Summe [mm]z^{2}[/mm] und
> nicht [mm]z^{2^{n}}[/mm] oder?
Nein:
[mm] \bruch{z^{2^{n+1}}}{z^{2^n}} = z^{2^{n+1} - 2^n} = z^{2*2^{n} - 2^n} = z^{2^n} [/mm]
Viele Grüße
Rainer
|
|
|
|