matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationPotenzreihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differentiation" - Potenzreihen
Potenzreihen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:18 Mo 19.01.2009
Autor: Palonina

Aufgabe
Sei $u: [mm] \IR \rightarrow \IR$ [/mm] zweimal differenzierbar, und es gelte $u ' ' = u$.

a) Ist $u$ um Null als Potenzreihe $u= [mm] \sum_{k=0}^{\infty}a_k x^k$ [/mm] darstellbar, so gilt

[mm] \hspace{1,5cm} [/mm] im Fall $u(0)=1, u ' (0)=0 :  [mm] a_k [/mm] = [mm] \left\{ \begin{array} 0 \mbox{0 \qquad für k ungerade}\\ \frac{1}{k!} \qquad \mbox{für k gerade}\end{array}\right.$ [/mm]

[mm] \hspace{1,5cm} [/mm] im Fall $u(0)=0, u ' (0)=1 :  [mm] a_k [/mm] = [mm] \left\{ \begin{array} 0\mbox{0 \qquad für k gerade}\\ \frac{1}{k!}\qquad \mbox{für k ungerade}\end{array}\right.$ [/mm]

b) Diese beiden Potenzreihen haben den Konvergenzradius [mm] $\infty$ [/mm] und sind Lösungen von $u ' ' = u$.

c) Sei $cosh(x):= [mm] \sum_{k=0}^{\infty}\frac{x^{2k}}{(2k)!}, [/mm] sinh(x):= [mm] \sum_{k=0}^{\infty}\frac{x^{2k+1}}{(2k+1)!}$. [/mm]

Es gilt $cosh' (x) = sinh (x), sinh'(x) = cosh(x)$.

d) Sei T irgendeine Lösung von $u ' ' = u$ mit [mm] $T(0)=\alpha, T'(0)=\beta$. [/mm] Dann folgt:


[mm] \hspace{1,5cm} [/mm] i) $f(x) = T(x) - [mm] \alpha \; [/mm] cosh (x) - [mm] \beta \;sinh [/mm] (x), g(x) = T'(x)- [mm] \alpha \;sinh [/mm] (x) [mm] -\beta \;cosh(x)$ [/mm] erfüllt $f' = g, g'=f $ und $f(0)=g(0)=0.$

[mm] \hspace{1,5cm} [/mm] ii) $F:= [mm] \frac{1}{2}(f+g)$ [/mm] erfüllt $F'=F, [mm] G=\frac{1}{2}(f-g)$ [/mm] erfüllt $G'=-G$.

[mm] \hspace{1,5cm} [/mm] iii) Es folgt $F=G=0$, damit $T(x)= [mm] \alpha \; [/mm] cosh(x) [mm] +\beta \;sinh(x)$. [/mm]

Hallo,

neue Woche - neues Glück - neuer Übungszettel!

Zunächst habe ich mich an Aufgabenteil a) versucht:

Ich habe versucht, mir die Darstellung der Taylorreihe klarzumachen. u ist zwar nur zweimal diffbar, aber wegen $u ' ' = u$ gilt dann doch [mm] $u^{(2k)}(0)= [/mm] u(0) = 1 $ und [mm] $u^{(2k+1)}(0)= [/mm] u'(0) = 0 $.

So erhalte ich die angegebenen [mm] a_k. [/mm]

zu b) habe ich leider keinen Ansatz.

zu c) Da die cosh(x) und sinh(x) in der Potenzreihendarstellung gegeben sind, soll ich die Ableitungen vermutlich nicht mit Hilfe von $cosh (x) = [mm] \frac{1}{2} (e^x +e^{-x})$ [/mm] beweisen.

cosh'(x)= [mm] \sum_{k=1}^{\infty}2k \frac{x^{2k-1}}{(2k)!} [/mm]
= [mm] \sum_{k=1}^{\infty} \frac{x^{2k-1}}{(2k-1)!}. [/mm] Durch Indexverschiebung erhalte ich sinh (x).

Muss ich noch begründen, warum ich die Potenzreihe gliedweise differenzieren darf?

Viele Grüße,
Palonina



        
Bezug
Potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 Mo 19.01.2009
Autor: MathePower

Hallo Palonina,

> Sei [mm]u: \IR \rightarrow \IR[/mm] zweimal differenzierbar, und es
> gelte [mm]u ' ' = u[/mm].
>  
> a) Ist [mm]u[/mm] um Null als Potenzreihe [mm]u= \sum_{k=0}^{\infty}a_k x^k[/mm]
> darstellbar, so gilt
>  
> [mm]\hspace{1,5cm}[/mm] im Fall [mm]u(0)=1, u ' (0)=0 : a_k = \left\{ \begin{array} 0 \mbox{0 \qquad für k ungerade}\\ \frac{1}{k!} \qquad \mbox{für k gerade}\end{array}\right.[/mm]
>  
> [mm]\hspace{1,5cm}[/mm] im Fall [mm]u(0)=0, u ' (0)=1 : a_k = \left\{ \begin{array} 0\mbox{0 \qquad für k gerade}\\ \frac{1}{k!}\qquad \mbox{für k ungerade}\end{array}\right.[/mm]
>  
> b) Diese beiden Potenzreihen haben den Konvergenzradius
> [mm]\infty[/mm] und sind Lösungen von [mm]u ' ' = u[/mm].
>  
> c) Sei [mm]cosh(x):= \sum_{k=0}^{\infty}\frac{x^{2k}}{(2k)!}, sinh(x):= \sum_{k=0}^{\infty}\frac{x^{2k+1}}{(2k+1)!}[/mm].
>
> Es gilt [mm]cosh' (x) = sinh (x), sinh'(x) = cosh(x)[/mm].
>  
> d) Sei T irgendeine Lösung von [mm]u ' ' = u[/mm] mit [mm]T(0)=\alpha, T'(0)=\beta[/mm].
> Dann folgt:
>  
>
> [mm]\hspace{1,5cm}[/mm] i) [mm]f(x) = T(x) - \alpha \; cosh (x) - \beta \;sinh (x), g(x) = T'(x)- \alpha \;sinh (x) -\beta \;cosh(x)[/mm]
> erfüllt [mm]f' = g, g'=f[/mm] und [mm]f(0)=g(0)=0.[/mm]
>  
> [mm]\hspace{1,5cm}[/mm] ii) [mm]F:= \frac{1}{2}(f+g)[/mm] erfüllt [mm]F'=F, G=\frac{1}{2}(f-g)[/mm]
> erfüllt [mm]G'=-G[/mm].
>  
> [mm]\hspace{1,5cm}[/mm] iii) Es folgt [mm]F=G=0[/mm], damit [mm]T(x)= \alpha \; cosh(x) +\beta \;sinh(x)[/mm].
>  
> Hallo,
>  
> neue Woche - neues Glück - neuer Übungszettel!
>  
> Zunächst habe ich mich an Aufgabenteil a) versucht:
>  
> Ich habe versucht, mir die Darstellung der Taylorreihe
> klarzumachen. u ist zwar nur zweimal diffbar, aber wegen [mm]u ' ' = u[/mm]
> gilt dann doch [mm]u^{(2k)}(0)= u(0) = 1[/mm] und [mm]u^{(2k+1)}(0)= u'(0) = 0 [/mm].
>
> So erhalte ich die angegebenen [mm]a_k.[/mm]
>
> zu b) habe ich leider keinen Ansatz.


Verwende hier das []Quotientenkriterium


>  
> zu c) Da die cosh(x) und sinh(x) in der
> Potenzreihendarstellung gegeben sind, soll ich die
> Ableitungen vermutlich nicht mit Hilfe von [mm]cosh (x) = \frac{1}{2} (e^x +e^{-x})[/mm]
> beweisen.
>  
> cosh'(x)= [mm]\sum_{k=1}^{\infty}2k \frac{x^{2k-1}}{(2k)!}[/mm]
>  =
> [mm]\sum_{k=1}^{\infty} \frac{x^{2k-1}}{(2k-1)!}.[/mm] Durch
> Indexverschiebung erhalte ich sinh (x).
>
> Muss ich noch begründen, warum ich die Potenzreihe
> gliedweise differenzieren darf?


Es gibt da einen Satz über die
gliedweise Differentiation von Potenzreihen.


>  
> Viele Grüße,
>  Palonina
>  
>  


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]