Potenzreihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 17:14 Mi 18.10.2006 | Autor: | Auric |
Aufgabe | [mm] \bruch{(v+2)^{3}}{(v+1)^{3}}\*\bruch{(2^{v}-2v+1)}{(2^{v+1}-2v+2)} [/mm] |
So das da oben is die Umformung einer Potenzreihe damit ich den Potenzradius berechenen kann.
Ich habe jetzt einfach durch [mm] v^{3} [/mm] alles geteilt, und dann [mm] \bruch{2^{v}\*v^{3}}{2^{v+1}\*v^{3}} [/mm] stehen. Dann kürze ich die Exponenten und teil nochmal durch [mm] v^{3}.
[/mm]
Somit bekomm ich für den [mm] \bruch{1}{2}, [/mm] also für den Potenzradius den Kehrwert 2 heraus.
Ich hab das Lösungsergebnis und es ist richtig was ich hab, aber mein Frage ist:
Darf ich einfach so durch [mm] v^{3} [/mm] schon teilen, oder muss ich erst die Exponenten wegbekommen also die [mm] 2^{v} [/mm] und die [mm] 2^{v+1}? [/mm]
Eigentlich ist das ganze doch monoton, dann darf man das doch machen.
Falls ich das nicht machen kann. Wie bekomm ich das zeuch dann weg?
Gruß Auric
|
|
|
|
>
> [mm]\bruch{(v+2)^{3}}{(v+1)^{3}}\*\bruch{(2^{v}-2v+1)}{(2^{v+1}-2v+2)}[/mm]
>[...]
>
> Ich habe jetzt einfach durch [mm]v^{3}[/mm] alles geteilt, und dann
> [mm]\bruch{2^{v}\*v^{3}}{2^{v+1}\*v^{3}}[/mm] stehen. Dann kürze ich
> die Exponenten und teil nochmal durch [mm]v^{3}.[/mm]
> Somit bekomm ich für den [mm]\bruch{1}{2},[/mm]
Hallo,
ich kann Dir nur sehr schlecht folgen, aber daß Deine Rechenoperationen recht gewagt (=völlig falsch) sind, scheint mir sicher zu sein.
Was ist das Ziel deiner Bemühungen?
>Potenzradius
Konvergenzradius
> Wie bekomm ich das zeuch dann weg?
Welches "Zeuch" soll warum weg?
Rätselhaft. Es erschiene mir nützlich, würdest Du die Ursprungsaufgabe inkl. Deiner Lösungen präsentieren.
Gruß v. Angela
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:43 So 22.10.2006 | Autor: | Auric |
Ähm ok.
Also ich hab ne Potenzreihe. Deren [mm] a_{\nu} [/mm] Anteil is eben dieser Term da oben, aber schon in umgestellter Form für den Konvergenzradius
[mm] \bruch{a_{\nu}+1}{a_{\nu}}.
[/mm]
Das ganze muss ich dann ja als Grenzwert ansehen und schauen was das Teil in Richtung [mm] \nu ->\infty [/mm] macht.
Wenn ich so alles druch das [mm] \nu [/mm] ^{3} Teile streben die Anteile die kleiner als [mm] \nu^{3} [/mm] sind ja gegen null. Aber die [mm] 2^{\nu} [/mm] und die [mm] 2^{\nu+1} [/mm] werden ja schneller größer als die Hoch 3.
Das mit dem Zeuch weg bekommen meine ich so:
Die zwei Zaheln bei denen [mm] \nu [/mm] als Exponent steht, also [mm] 2^{\nu} [/mm] und [mm] 2^{\nu+1} [/mm] .
Wenn ich die wegbekommen könnte wärs ziemlich einfach. Aber das ganze is ja ne Summe also nix mit kürzen.
Hier ist auch nochmal die Reihe als ganzes:
[mm] \summe_{\nu=1}^{\infty}\bruch{(\nu+1)^{3}+(x-2)^{\nu}}{2^{\nu}-2\nu+1}
[/mm]
Ist es jetzt verständlicher?
Gruß Auric
|
|
|
|