matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikPotenzreihe, Differential
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Diskrete Mathematik" - Potenzreihe, Differential
Potenzreihe, Differential < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihe, Differential: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:37 Mo 24.12.2012
Autor: sissile

Aufgabe
Es ist leicht zu sehen, dass die Differentialgleichung
D f(z) = [mm] \frac{\alpha}{1+z} [/mm] f(z)
für formale Potenzreihen nur eine Lösung (abgesehen von konstanten Vielfachen) haben kann.
D ist der Differentiationsoperator.

Hallo,
Ich sehe nicht wieso die Differentialgleichung nur eine Lösung haben kann. Leider steht im Skriptum keine weitere Erklärung. Würde mich über Hilfe freuen.
(Ich hatte noch nicht so wirklich Differentialgleichungen an der Uni)

Sei a(z) = [mm] a_0 [/mm] + [mm] a_1 [/mm] z + [mm] a_2 z^2 [/mm] .. eine formale Potenzreihe. Der differentiationsopeartor D ist durch
D a := [mm] a_1 [/mm] + 2 [mm] a_2 [/mm] z + 3 [mm] a_3 z^2 [/mm] +...
definiert.

Frohes Fest,
LG

        
Bezug
Potenzreihe, Differential: Antwort
Status: (Antwort) fertig Status 
Datum: 00:59 Di 25.12.2012
Autor: leduart

hallo
mit 1+z multiplizieren und die [mm] a_i [/mm] durch Koeffizientenvergleich bestimmen, dann siehst du es.
Gruss leduart

Bezug
                
Bezug
Potenzreihe, Differential: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:16 Di 25.12.2012
Autor: sissile

Ich hab das mal so versucht:

f(z)= [mm] a_0 [/mm] + [mm] a_1 [/mm] z + [mm] a_2 z^2+... [/mm]

Im Konvergenzradius:
D f(z)= [mm] \frac{\alpha}{1+z} [/mm] f(z)
D f(z) + z D f(z)= [mm] \alpha [/mm] f(z)
[mm] a_1 [/mm] + 2 [mm] a_2 [/mm] z + 3 [mm] a_3 z^2 [/mm] +....+ z [mm] a_1 [/mm] + 2 [mm] a_2 z^2 [/mm] + 3 [mm] a_3z^3 [/mm] +...= [mm] \alpha a_0 [/mm] + [mm] \alpha a_1 [/mm] z + [mm] \alpha a_2 z^2 [/mm] +....

<=>
[mm] a_1 [/mm] + (2 [mm] a_2 +a_1) [/mm] z + (3 [mm] a_3 [/mm] + 2 [mm] a_2) z^2 [/mm] +....= [mm] \alpha a_0 [/mm] + [mm] \alpha a_1 [/mm] z + [mm] \alpha a_2 z^2 [/mm] +....

=> [mm] a_1= \alpha a_0 [/mm]
=>2 [mm] a_2 +a_1 =\alpha a_1 [/mm]
=> 3 [mm] a_3 [/mm] + 2 [mm] a_2 =\alpha a_2 [/mm]
...
Nun weiß ich nicht weiter... Da ich auch nicht weiß welche Koeffizienten 0 sind...


Bezug
                        
Bezug
Potenzreihe, Differential: Antwort
Status: (Antwort) fertig Status 
Datum: 11:40 Di 25.12.2012
Autor: ullim

Hi,

allgemein kommt bei dem Koeffizientenvergleich heraus

[mm] \alpha*a_0=a_1 [/mm] und

[mm] \alpha*a_i=a_{i+1}*(i+1)+a_i*i [/mm] für [mm] i\ge [/mm] 1

Damit sind die Koeffizienten berechenbar in Abhängigkeit von [mm] \alpha [/mm] und [mm] a_0. [/mm]


Bezug
                                
Bezug
Potenzreihe, Differential: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:51 Di 25.12.2012
Autor: sissile

ah okay, danke ;)

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]