Potenzreihe < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Stellen Sie bitte die Funktion [mm]F: \IR \exists x \mapsto \integral_{0}^{x}{ \bruch{t^2 - sin(t^2)}{t^2} dt} \in \IR[/mm]
als eine Potenzreihe mit Entwicklungsmitte [mm]x_0 = 0[/mm] dar:
Hallo Leute,
ich brauch ganz dringend eure Hilfe zu dieser Aufgabe. Ich weiss in Prinzip wie das ganz hier Funktioniert und zeig auch demnach wie weit ich gekommen bin.
[mm].. = \integral_{0}^{x}{\bruch{1}{t^2}(t^2 - \summe_{k=0}^{\infty} \bruch{-1^k}{(2k+1)!}(t^2)^{2k+1} )dt}[/mm]
[mm].. = \integral_{0}^{x}{\bruch{1}{t^2}\summe_{k=1}^{\infty} \bruch{-1^k}{(2k+1)!}(t^2)^{2k+1} dt}[/mm]
[mm].. = \integral_{0}^{x}{\bruch{1}{t^2} \summe_{k=1}^{\infty} \bruch{-1^k}{(2k+1)!}(t^2)^{2k}*t^2 dt}[/mm]
[mm].. = \integral_{0}^{x}{ \summe_{k=1}^{\infty} \bruch{-1^k}{(2k+1)!}t^{4k} dt}[/mm]
[mm].. = \summe_{k=1}^{\infty} \bruch{-1^k}{(2k+1)!}*\bruch{1}{4k+1}*x^{4k+1} + C[/mm]
an dieser Stelle habe ich gedacjt ich wäre fertig und schaute in die Lösung. Die natürlch nicht mir meiner übereinstimmte. Maßgeblich unterschieden diese sich ab Zeile 2 mit:
[mm].. = - \integral_{0}^{x}{\bruch{1}{t^2}\summe_{k=1}^{\infty} \bruch{-1^k}{(2k+1)!}(t^2)^{2k+1} dt}[/mm]
[...]
[mm].. = - \summe_{k=1}^{\infty} \bruch{-1^k}{(2k+1)!}*\bruch{1}{4k+1}*x^{4k+1} + C[/mm]
Ich weiss beim besten Willen nicht wo dieses Vorzeichen herkommt :D
Ich würde mich sehr über einen Tip freunen und evtl. eine bestädigung der Lösung sofern möglich.
Danke |
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:23 Di 31.01.2012 | Autor: | meili |
Hallo,
> Stellen Sie bitte die Funktion [mm]F: \IR \exists x \mapsto \integral_{0}^{x}{ \bruch{t^2 - sin(t^2)}{t^2} dt} \in \IR[/mm]
> als eine Potenzreihe mit Entwicklungsmitte [mm]x_0 = 0[/mm] dar:
>
> Hallo Leute,
>
> ich brauch ganz dringend eure Hilfe zu dieser Aufgabe. Ich
> weiss in Prinzip wie das ganz hier Funktioniert und zeig
> auch demnach wie weit ich gekommen bin.
>
> [mm].. = \integral_{0}^{x}{\bruch{1}{t^2}(t^2 - \summe_{k=0}^{\infty} \bruch{-1^k}{(2k+1)!}(t^2)^{2k+1} )dt}[/mm]
Hier fehlt dringend eine Klammer (sonst ist das [mm] $-1^k$ [/mm] zu nichts nütze und falsch; die Summmanden sollen doch alternieren [mm] $(-1)^k$:
[/mm]
[mm].. = \integral_{0}^{x}{\bruch{1}{t^2}(t^2 - \summe_{k=0}^{\infty} \bruch{(-1)^k}{(2k+1)!}(t^2)^{2k+1} )dt}[/mm]
>
> [mm].. = \integral_{0}^{x}{\bruch{1}{t^2}\summe_{k=1}^{\infty} \bruch{-1^k}{(2k+1)!}(t^2)^{2k+1} dt}[/mm]
Vor dem Summenzeichen stand oben doch ein Minus. Warum fehlt es pötzlich?
[mm].. = \integral_{0}^{x}-{\bruch{1}{t^2}\summe_{k=1}^{\infty} \bruch{(-1)^k}{(2k+1)!}(t^2)^{2k+1} dt}[/mm]
>
> [mm].. = \integral_{0}^{x}{\bruch{1}{t^2} \summe_{k=1}^{\infty} \bruch{-1^k}{(2k+1)!}(t^2)^{2k}*t^2 dt}[/mm]
>
> [mm].. = \integral_{0}^{x}{ \summe_{k=1}^{\infty} \bruch{-1^k}{(2k+1)!}t^{4k} dt}[/mm]
Abgesehen von den Folgefehler dann richtig.
>
> [mm].. = \summe_{k=1}^{\infty} \bruch{-1^k}{(2k+1)!}*\bruch{1}{4k+1}*x^{4k+1} + C[/mm]
Ohne + C: Es wurde doch ein bestimmtes Integral ausgewertet.
>
> an dieser Stelle habe ich gedacjt ich wäre fertig und
> schaute in die Lösung. Die natürlch nicht mir meiner
> übereinstimmte. Maßgeblich unterschieden diese sich ab
> Zeile 2 mit:
>
>
> [mm].. = - \integral_{0}^{x}{\bruch{1}{t^2}\summe_{k=1}^{\infty} \bruch{-1^k}{(2k+1)!}(t^2)^{2k+1} dt}[/mm]
>
> [...]
>
> [mm].. = - \summe_{k=1}^{\infty} \bruch{-1^k}{(2k+1)!}*\bruch{1}{4k+1}*x^{4k+1} + C[/mm]
>
> Ich weiss beim besten Willen nicht wo dieses Vorzeichen
> herkommt :D
> Ich würde mich sehr über einen Tip freunen und evtl. eine
> bestädigung der Lösung sofern möglich.
>
> Danke
>
>
>
Gruß
meili
|
|
|
|
|
Hallo meili,
danke zunächst für deine Antwort. Die Klammer, die gefehlt hat, war nur ein Übertragungsfehler. Allerdring verstehe ich da mit dem Vorzeichen nicht. Warum bleibt dieser erhalten wenn ich k=1 setze. Ich habe andere Beispiele gerechnet bei dem das Vorzeichen an dem Summenzeichen "verschwindet". Ich bin diesbezüglich ein wenig verwirrt.
Hier das Beispiel:
[mm]F(x) = \integral_{0}^{x}{\bruch{1 - cos(t)}{t} dt}[/mm]
[mm]... = \integral_{0}^{x}{\bruch{1}{t}(1- \summe_{k=0}^{\infty} \bruch{(-1)^k}{(2k+1)!} t^{2k})dt}
[/mm]
[mm]... = \integral_{0}^{x}{\bruch{1}{t} \summe_{k=1}^{\infty} \bruch{(-1)^k}{(2k+1)!} t^{2k}dt}
[/mm]
Ist das etwa auch verkehrt?
Ich freue mich auf eine Antwort
Grüße
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:11 Mi 01.02.2012 | Autor: | fred97 |
>
> Hallo meili,
>
> danke zunächst für deine Antwort. Die Klammer, die
> gefehlt hat, war nur ein Übertragungsfehler. Allerdring
> verstehe ich da mit dem Vorzeichen nicht. Warum bleibt
> dieser erhalten wenn ich k=1 setze. Ich habe andere
> Beispiele gerechnet bei dem das Vorzeichen an dem
> Summenzeichen "verschwindet". Ich bin diesbezüglich ein
> wenig verwirrt.
>
> Hier das Beispiel:
>
> [mm]F(x) = \integral_{0}^{x}{\bruch{1 - cos(t)}{t} dt}[/mm]
>
> [mm]... = \integral_{0}^{x}{\bruch{1}{t}(1- \summe_{k=0}^{\infty} \bruch{(-1)^k}{(2k+1)!} t^{2k})dt}
[/mm]
>
> [mm]... = \integral_{0}^{x}{\bruch{1}{t} \summe_{k=1}^{\infty} \bruch{(-1)^k}{(2k+1)!} t^{2k}dt}
[/mm]
>
> Ist das etwa auch verkehrt?
Nein.
FRED
>
> Ich freue mich auf eine Antwort
> Grüße
|
|
|
|
|
Aufgabe | Danke Fred, ich verstehe wirklich nicht wiso das mit den Vorzeichen so ist. Für mich sind beide Funktion fast identisch! Wäre es möglich, dass mir jemand erklärt warum das Vorzeichen bei der Summe, bei der einen Funktion wegfällt und bei der anderen nicht. Für mich alternieren sie auf gleiche weise(+ - + ... ).
also: [mm]\integral_{0}^{x}{\bruch{1}{t}( 1 - (1 - \bruch{1}{2!}t^2 + [...] dt}
[/mm]
und: [mm]\integral_{0}^{x}{\bruch{1}{t^2}( t^2 - (t^2 - \bruch{1}{3!}t^6 + [...] dt}
[/mm]
Ich bin hier wirklich am verzweifeln! :D
Gruß |
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:20 Fr 03.02.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Hallo Orwischer-Assi,
irgendwie stimmt da m.E. etwas nicht ...
>
> Hallo meili,
>
> danke zunächst für deine Antwort. Die Klammer, die
> gefehlt hat, war nur ein Übertragungsfehler. Allerdring
> verstehe ich da mit dem Vorzeichen nicht. Warum bleibt
> dieser erhalten wenn ich k=1 setze. Ich habe andere
> Beispiele gerechnet bei dem das Vorzeichen an dem
> Summenzeichen "verschwindet". Ich bin diesbezüglich ein
> wenig verwirrt.
>
> Hier das Beispiel:
>
> [mm]F(x) = \integral_{0}^{x}{\bruch{1 - cos(t)}{t} dt}[/mm]
>
> [mm]... = \integral_{0}^{x}{\bruch{1}{t}(1- \summe_{k=0}^{\infty} \bruch{(-1)^k}{(2k+1)!} t^{2k})dt}[/mm]
Es ist doch [mm]\cos(t)=\sum\limits_{k=0}^{\infty}\frac{(-1)^k}{(2k)!}\cdot{}t^{2k}[/mm]
>
> [mm]... = \integral_{0}^{x}{\bruch{1}{t} \summe_{k=1}^{\infty} \bruch{(-1)^k}{(2k+1)!} t^{2k}dt}[/mm]
Das stimmt doch nicht?!
[mm]1-\sum\limits_{k=0}^{\infty}\frac{(-1)^{k}}{(2k)!}\cdot{}t^{2k}=1-\left(1-\frac{t^2}{2!}+\frac{t^4}{4!}\mp\ldots\right)[/mm]
[mm]=\frac{t^2}{2!}-\frac{t^4}{4!}\pm\ldots[/mm]
[mm]=\sum\limits_{k=1}^{\infty}\frac{(-1)^{k+1}}{(2k)!}\cdot{}t^{2k} \ = \ - \ \sum\limits_{k=1}^{\infty}\frac{(-1)^{k}}{(2k)!}\cdot{}t^{2k}[/mm]
>
> Ist das etwa auch verkehrt?
>
> Ich freue mich auf eine Antwort
> Grüße
LG
schachuzipus
|
|
|
|
|
Aufgabe | Hallo, ja du hast natürlich recht, das ist wohl beim kopieren passiert, ich wollte die ganze Formel nicht nochmal tippen.
Die letzt Zeile die du geschrieben hast, ist genau das was ich nicht verstehe. In der Lösung steht kein minus mehr vor dem Summenzeichen!
$ F(x) = [mm] \integral_{0}^{x}{\bruch{1 - cos(t)}{t} dt} [/mm] $
$= [mm] \integral_{0}^{x}{\bruch{1}{t} (1 - \summe_{k=0}^{\infty} \bruch{(-1)^k}{(2k)!} t^{2k}dt} [/mm] $
wuusch weg:
$= [mm] \integral_{0}^{x}{\bruch{1}{t} (\summe_{k=1}^{\infty} \bruch{(-1)^k}{(2k)!} t^{2k}dt} [/mm] $ |
|
|
|
|
|
Hallo nochmal,
> Hallo, ja du hast natürlich recht, das ist wohl beim
> kopieren passiert, ich wollte die ganze Formel nicht
> nochmal tippen.
>
> Die letzt Zeile die du geschrieben hast, ist genau das was
> ich nicht verstehe. In der Lösung steht kein minus mehr
> vor dem Summenzeichen!
>
> [mm]F(x) = \integral_{0}^{x}{\bruch{1 - cos(t)}{t} dt}[/mm]
>
> [mm]= \integral_{0}^{x}{\bruch{1}{t} (1 - \summe_{k=0}^{\infty} \bruch{(-1)^k}{(2k)!} t^{2k}dt}[/mm]
>
> wuusch weg:
>
> [mm]= \integral_{0}^{x}{\bruch{1}{t} (\summe_{k=1}^{\infty} \bruch{(-1)^k}{(2k)!} t^{2k}dt}[/mm]
Das stimmt so auch nicht!
Entweder steht im Exponenten der [mm]-1[/mm] ein [mm]k+1[/mm], also [mm](-1)^{k+1}[/mm] in der Summe oder "nur" [mm](-1)^k[/mm], dann aber mit einer "herausgezogenen" [mm]-1[/mm]
Also [mm]\int\limits_{0}^{x}{\frac{1}{t}\cdot{}\sum\limits_{k=1}^{\infty}\frac{(-1)^{k+1}}{(2k)!}\cdot{}t^{2k} \ dt}[/mm] oder [mm]-\int\limits_{0}^{x}{\frac{1}{t}\cdot{}\sum\limits_{k=1}^{\infty}\frac{(-1)^{k}}{(2k)!}\cdot{}t^{2k} \ dt}[/mm]
Das steht auch in "meiner" Umformung in der letzten Antwort ...
Gruß
schachuzipus
|
|
|
|
|
Dann ist die Lösung wohl fehlerhaft, und ich habe mir umsonst die Haare rausgerissen.....
Danke schachuzipus, deine Lösung ist mir auch Plausibler als die von Lösungssammlung.
Mich irritieren auch die anderen Antwoten, die gemeint haben das es richtig ist, wie Fred z.B.
Dennoch hoffe ich das es sich jetzt geregelt hat und bedanke mich für diese tolle Unterstüzung!
|
|
|
|