matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenPotenzreiehenentwicklung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Potenzreiehenentwicklung
Potenzreiehenentwicklung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreiehenentwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:32 Mi 24.01.2018
Autor: Teekanne3d

Aufgabe
f(x)=(x+1)e^(-2x)


Ich teilte f(x) auf:

g(x)=xe^(-2x)

h(x)=e^(-2x)

Errechnete jeweils die n. Ableitung:

[mm] g^n(x)=e^{-2x}(-1)^n*2^n(x-n) [/mm]

[mm] h^n(x)=e^{-2x}(-1)^n*2^n [/mm]

Für x=0:

[mm] g^n(0)=-(-1)^n*2^nn [/mm]

[mm] h^n(0)=(-1)^n*2^n [/mm]

Also

[mm] f^n(0)=(-1)^n2^n(1-n) [/mm]

MacLaurin-Entwicklung:

[mm] f(x)=\summe_{n=0}^{n}\bruch{(-1)^n*2^n(1-n)}{n!}x^n [/mm]

Aber es soll sein:

[mm] f(x)=1+\summe_{n=1}^{n}\bruch{(-1)^n*2^n(1-n)}{(n+1)!}(x)^{n+1} [/mm]

Wo ist habe ich einen Fehler gemacht, oder kann man das Verfahren hier nicht anwenden?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Potenzreiehenentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 06:09 Mi 24.01.2018
Autor: abakus

Wozu der Aufwand?
Nimm die bekannte Entwicklung von Exp(x), ersetze x durch (-2x) und multipliziere das Ergebnis mit (x-1).

Bezug
                
Bezug
Potenzreiehenentwicklung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:31 Mi 24.01.2018
Autor: fred97


> Wozu der Aufwand?
>  Nimm die bekannte Entwicklung von Exp(x), ersetze x durch
> (-2x) und multipliziere das Ergebnis mit (x-1).

Hallo abakus,

Du meinst sicher x+1


Bezug
        
Bezug
Potenzreiehenentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:44 Mi 24.01.2018
Autor: fred97


> f(x)=(x+1)e^(-2x)
>  
> Ich teilte f(x) auf:
>
> g(x)=xe^(-2x)
>  
> h(x)=e^(-2x)
>  
> Errechnete jeweils die n. Ableitung:
>  
> [mm]g^n(x)=e^{-2x}(-1)^n*2^n(x-n)[/mm]


Das stimmt ja schon im Falle n=1 nicht !


>
> [mm]h^n(x)=e^{-2x}(-1)^n*2^n[/mm]
>  
> Für x=0:
>  
> [mm]g^n(0)=-(-1)^n*2^nn[/mm]
>  
> [mm]h^n(0)=(-1)^n*2^n[/mm]
>  
> Also
>  
> [mm]f^n(0)=(-1)^n2^n(1-n)[/mm]
>  
> MacLaurin-Entwicklung:
>  
> [mm]f(x)=\summe_{n=0}^{n}\bruch{(-1)^n*2^n(1-n)}{n!}x^n[/mm]
>  
> Aber es soll sein:
>  
> [mm]f(x)=1+\summe_{n=1}^{n}\bruch{(-1)^n*2^n(1-n)}{(n+1)!}(x)^{n+1}[/mm]
>  
> Wo ist habe ich einen Fehler gemacht, oder kann man das
> Verfahren hier nicht anwenden?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]