Potenzen < Klassen 8-10 < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:08 Sa 26.02.2011 | Autor: | luna19 |
Aufgabe | Wichtige Kenngrößen unseres Sonnensystems sind die Durchmesser der Sonne (1,4*10^9m),des Mondes (3,48*10^6m)und der Erde (1,28*10^7m),Für eine Ausstellung soll ein Modell angefertigt werden,in dem die Erde ein Ball mit 20cm Durchmesser ist.
Welche Durchmesser haben Sonne und Mond in diesem Modell? |
Was muss ich hier eigentlich berechnen?
Ich habe 20 cm in m umgewandelt:0,2m
Dann habe ich den Durchmesser vom Mond durch den Durchschnitt vom Modell geteilt.
[mm] 1,28*10^7/2*10^-1=0,64*10^8
[/mm]
das habe ich dann durch den Durchschnitt der Sonne geteilt
[mm] 1,4*10^9/0;64*10^8=(1,4/0,64)^9-8=2,12*10^1=21,1m
[/mm]
Das Modell müsste dann einen Durchschnitt von 2110cm haben und das macht keinen Sinn.
Danke
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:23 Sa 26.02.2011 | Autor: | M.Rex |
Hallo
Dein Fehler ist bei der Rechnung mit der Wissenschaftlichen Schreibweise.
[mm] 1,28\cdot10^{7}m [/mm] musst du als [mm] 1,28\cdot(10^{7})m [/mm] lesen, denn die ^{7} bezieht sich nur auch die 10.
Also gilt:
[mm] \frac{1,4\cdot10^9}{0,64\cdot10^8}}=\frac{1,4}{0,64}\cdot10^{9-8}=2,5625\cdot10^{1}=2,5625 [/mm]
Marius
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:05 Sa 26.02.2011 | Autor: | luna19 |
ähm ich frage mich wie du auf die 2,563 kommst und müsste dann nicht 2563 m herauskommen
für den Mond :
[mm] 3,48/0,64*10^6-8=5,43^-2
[/mm]
das sind dann ausgerechnet 0,034
in cm :3,39 cm
|
|
|
|
|
Der "Kürzungsfaktor" ist wie du ausgerechnet hast: [mm]6.4*10^7[/mm]
> ähm ich frage mich wie du auf die 2,563 kommst und müsste
> dann nicht 2563 m herauskommen
>
> für den Mond :
>
> [mm]3,48/0,64*10^6-8=5,43^-2[/mm]
ok bis auf Rundung und die fehlende 10 sind es dann [mm]5.44*10^{-2} m[/mm] für den Monddurchmesser
>
> das sind dann ausgerechnet 0,034
???
du hast doch schon den Monddurchmesser in Metern. Multipliziere ihn mit 100, dann hast du ihn cm.
>
> in cm :3,39 cm
Der Sonnendurchmesser fehlt noch.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:12 Sa 26.02.2011 | Autor: | mmhkt |
Aufgabe | Größenverhältnisse |
Guten Abend,
hm - müssten nicht auch die Modelle, wenn ein einheitlicher Maßstab verwendet wird, im selben Größenverhältnis zueinander stehen wie die Originale?
Die Sonne hat mit ihren ca. 1,4 Millionen Kilometern Durchmesser immerhin etwa das 109-fache des Erddurchmessers von ca. 12800km.
Wenn also 20 Modell-cm dem Erddurchmesser entsprechen, müsste m.E. das Sonnenmodell um den Faktor 109 größer sein.
Beim Monddurchmesser von 3475km ergibt sich ein Erde-Mond-Verhältnis von ca. 3,68:1
20cm Erdmodell wären also 3,68-fach größer als das Mondmodell.
Oder bin ich damit auf dem Holzweg?
Schönen Gruß
mmhkt
|
|
|
|
|
Hallo mmhkt,
> Größenverhältnisse
> Guten Abend,
> hm - müssten nicht auch die Modelle, wenn ein
> einheitlicher Maßstab verwendet wird, im selben
> Größenverhältnis zueinander stehen wie die Originale?
>
> Die Sonne hat mit ihren ca. 1,4 Millionen Kilometern
> Durchmesser immerhin etwa das 109-fache des Erddurchmessers
> von ca. 12800km.
>
> Wenn also 20 Modell-cm dem Erddurchmesser entsprechen,
> müsste m.E. das Sonnenmodell um den Faktor 109 größer
> sein.
>
>
> Beim Monddurchmesser von 3475km ergibt sich ein
> Erde-Mond-Verhältnis von ca. 3,68:1
> 20cm Erdmodell wären also 3,68-fach größer als das
> Mondmodell.
>
> Oder bin ich damit auf dem Holzweg?
Nein, da liegst Du völlig richtig.
>
> Schönen Gruß
> mmhkt
Gruss
MathePower
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:33 Sa 26.02.2011 | Autor: | mmhkt |
Guten Abend,
danke für die schnelle Rückmeldung und Bestätigung.
Schönen Abend
mmhkt
|
|
|
|