matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenPotenz einer komplexen Zahl
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Komplexe Zahlen" - Potenz einer komplexen Zahl
Potenz einer komplexen Zahl < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenz einer komplexen Zahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:16 So 23.03.2008
Autor: NichtExistent

Aufgabe
Geben Sie [mm]a, b \in \IR[/mm] an mit [mm]z^{10} = a + bj[/mm] zu [mm]z = 1 + j[/mm].

Hallo liebe Community,
ich habe ein kleines Problem bei der oben stehenden Aufgabe. Bis einschließlich Schritt 4 konnte ich es noch ständig lösen und habe es auch soweit verstanden. Nachdem ich dann einen Blick in die Musterlösung geworfen habe, um es weiter nachzuvollziehen bin ich auf ein kleines "Problem" gestoßen. Hier erstmal was in der Musterlösung steht:

1.: [mm]z = 1 + j[/mm]
2.: [mm]z = \sqrt{2} * e^{\frac{\pi}{4}*j}[/mm]
3.: [mm]z^{10} = \sqrt{2}^{10} * e^{10*\frac{\pi}{4}*j}[/mm]
4.: [mm]z^{10} = 2^{5} * e^{\frac{5}{2}\pi*j}[/mm]
5.: [mm]z^{10} = 32 * e^{\frac{1}{2}\pi*j}[/mm]
6.: [mm]z^{10} = 32 * j[/mm]

Mein Problem ist nun, wie ich von [mm]e^{\frac{5}{2}\pi*j}[/mm] zu [mm]e^{\frac{1}{2}\pi*j}[/mm] (Schritt 4 -> Schritt 5) und dann von [mm]e^{\frac{1}{2}\pi*j}[/mm] zu [mm]j[/mm] (Schritt 5 -> Schritt 6) komme? Wahrscheinlich ist das nun vollkommen rudimentär und ich habe nur nen Brett vor'm Kopf.

Vielen Dank im Voraus,
NE

        
Bezug
Potenz einer komplexen Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 15:29 So 23.03.2008
Autor: logarithmus

Hi,
wir haben:
[mm] e^{ \frac{5}{2}\pi*j } [/mm] = [mm] e^{ 2\pi*j+\frac{1}{2}\pi*j } [/mm] = [mm] \underbrace{e^{2\pi*j}}_{= 1}*e^{\frac{1}{2}\pi*j} [/mm] = [mm] e^{\frac{1}{2}\pi*j} [/mm] =  [mm] \underbrace{cos(\frac{1}{2}\pi)}_{= 0} [/mm] + j* [mm] \underbrace{sin(\frac{1}{2}\pi)}_{= 1} [/mm] = j.

Gruss,
logarithmus

Bezug
                
Bezug
Potenz einer komplexen Zahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:32 So 23.03.2008
Autor: NichtExistent

Hey logarithmus,
vielen lieben Dank.

Grüße,
NE

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]