matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenHochschulPhysikPotential einer Punktladung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "HochschulPhysik" - Potential einer Punktladung
Potential einer Punktladung < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potential einer Punktladung: 3dimensionaler Raum
Status: (Frage) beantwortet Status 
Datum: 22:20 Mo 11.05.2009
Autor: tedd

Aufgabe
Das Potential zu einer Punktladung im dreidimensionalen Raum ist gegeben durch:

[mm] \Phi(x,y,z)=\bruch{1}{4*\pi*\sqrt{x^2+y^2+z^2}} [/mm]

Zeige, dass somit

[mm] \nabla^2\Phi(x,y,z)=\delta(x,y,z) [/mm] gilt.

Bin so vorgegangen.. hoffe das ist von der Schreibweise ungefähr richtig so (das mit dem (...)' ist denke ich was geschlunzt aber egal)

Zunächst:

[mm] \bruch{\partial}{\partial x}=\bruch{1}{4*\pi)}*\left((x^2+y^2+z^2)^{-\bruch{1}{2}}\right)'=\bruch{1}{4*\pi}*\bruch{-2*x}{2*\sqrt(x^2+y^2+z^2)^3}=-\bruch{x}{4*\pi}*\bruch{1}{\sqrt(x^2+y^2+z^2)^3} [/mm]

Dann

[mm] \bruch{\partial^2}{\partial x^2}=\left(-\bruch{x}{4*\pi}*\left(x^2+y^2+z^2\right)^{-\bruch{3}{2}}\right)'=\bruch{-1}{4*\pi}*\left(x^2+y^2+z^2\right)^{-\bruch{3}{2}}+\bruch{-x}{4*\pi}*\left(-\bruch{3}{2}\right)*\left(x^2+y^2+z^2\right)^{-\bruch{5}{2}}*2*x [/mm]
[mm] =\bruch{1}{4*\pi}*\left(x^2+y^2+z^2\right)^{-\bruch{3}{2}}*\left(-1+3*x^2*\left(x^2+y^2+z^2\right)^{-1}\right) [/mm]
[mm] =\bruch{1}{4*\pi}*\bruch{1}{\sqrt{(x^2+y^2+z^2)^3}}*\left(-1+\bruch{3*x^2}{x^2+y^2+z^2}\right) [/mm]

Also wenn die Ableitung stimmt, was ich hoffe, dann müssten die anderen 2 partiellen Ableitungen genauso aussehen, nur das in der Klammer im Zähler einmal [mm] y^2 [/mm] und einmal [mm] z^2 [/mm] steht...

für [mm] \nabla^2 [/mm] muss ich dann alle partiellen Ableitungen addieren, denn ich muss eine Poissongleichung erhalten richtig? [mm] \nabla^2 [/mm] g(x,y,z)=f(x,y,z)

Also lass ich den ausgeklammerten Ausdruck so stehen und addiere nur die Terme in der Klammer:

[mm] \nabla^2\Phi(x,y,z)=\bruch{1}{4*\pi}*\bruch{1}{\sqrt{(x^2+y^2+z^2)^3}}*\left(-3+\bruch{3*x^2}{x^2+y^2+z^2}+\bruch{3*y^2}{x^2+y^2+z^2}+\bruch{3*z^2}{x^2+y^2+z^2}\right) [/mm]

Jetzt könnte ich in der Klammer noch mehr ausklammern aber ich wollte erstmal nachrfagen ob ich bis hierher alles richtig gemacht hab :-)

Danke und Gruß,
tedd

        
Bezug
Potential einer Punktladung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:55 Di 12.05.2009
Autor: leduart

Hallo
sieht richtig aus, und die klammer ist ja 0 fuer x,y,z [mm] \ne [/mm] 0
Gruss leduart

Bezug
                
Bezug
Potential einer Punktladung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:49 Do 14.05.2009
Autor: tedd

Stimmt, danke fürs drüberschauen [ok]

tedd

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]