matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInterpolation und ApproximationPolynominterpolation
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Interpolation und Approximation" - Polynominterpolation
Polynominterpolation < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynominterpolation: Basen des Polynomraums
Status: (Frage) beantwortet Status 
Datum: 20:29 Mi 04.03.2009
Autor: Pacapear

Hallo zusammen!

Ich habe eine kurze Frage:

Warum haben verschiedene Basen des Polynomsraums [mm] P_n [/mm] (der Raum aller Polynome vom Grad n) immer n+1 Elemente?

Also in der Monombasis hab ich die Basiselemente [mm] 1,t,t^2,...,t^n, [/mm] bei der Lagrangebasis sind es die Lagrange-Polynome [mm] L_0,...,L_n [/mm] oder bei der Hermitebasis die Polynome [mm] H_0,...,H_n. [/mm]

Also bei Dimension n hab ich n+1 Basiselemente.

Also genau anders als bei Vektoren, wo ein Raum von Dimension n auch n Basiselemente (Basisvektoren) hat.

Wieso ist das so verschieden?

LG, Nadine

        
Bezug
Polynominterpolation: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 Mi 04.03.2009
Autor: XPatrickX


> Hallo zusammen!
>  

Hallo!

> Ich habe eine kurze Frage:
>  
> Warum haben verschiedene Basen des Polynomsraums [mm]P_n[/mm] (der
> Raum aller Polynome vom Grad n) immer n+1 Elemente?
>  
> Also in der Monombasis hab ich die Basiselemente
> [mm]1,t,t^2,...,t^n,[/mm] bei der Lagrangebasis sind es die
> Lagrange-Polynome [mm]L_0,...,L_n[/mm] oder bei der Hermitebasis die
> Polynome [mm]H_0,...,H_n.[/mm] [ok]
>  
> Also bei Dimension n hab ich n+1 Basiselemente.

Der Satz ist falsch!! Polynome von Grad [mm] \le [/mm] n haben Dimension n+1 !
Wie kommst du auf n? Wie du selbst festgestellt hast, es es n+1 Basiselemente.

>  
> Also genau anders als bei Vektoren, wo ein Raum von
> Dimension n auch n Basiselemente (Basisvektoren) hat.
>  

Die Dimension ist genau über die Anzahl der Basiselemente definiert!
Also:
[mm] \IR^n: [/mm] jede Basis hat n Elemente [mm] \Rightarrow dim(\IR^n)=n [/mm]
[mm] \mathbb{P}_n: [/mm] jede Basis hat n+1 Elementen [mm] \Rightarrow dim(\mathbb{P}_n)=n+1 [/mm]


> Wieso ist das so verschieden?

Hier ist gar nichts verschieden ;-)

>  
> LG, Nadine

Gruß zurück , Patrick

Bezug
                
Bezug
Polynominterpolation: Grad = Dimension
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:52 Mi 04.03.2009
Autor: Pacapear

Hallo!

> Der Satz ist falsch!! Polynome von Grad [mm]\le[/mm] n haben
> Dimension n+1 !
> Wie kommst du auf n? Wie du selbst festgestellt hast, es es
> n+1 Basiselemente.

Irgendwie hatte ich im Kopf, dass der Grad gleich der Dimension ist *grübel*

Gut, wird direkt gelöscht :-)!

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]