matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSteckbriefaufgabenPolynomfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Steckbriefaufgaben" - Polynomfunktion
Polynomfunktion < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynomfunktion: Wo liegt Fehler?
Status: (Frage) beantwortet Status 
Datum: 21:00 Do 09.10.2008
Autor: Dinker

Aufgabe
http://www.onlinemathe.de/forum/Polynomfunktion-Wo-liegt-Fehler

Eine Parabel 4. Ordnung hat im Nullpunkt einen Terassenpunkt und bei x=1 eine weiteren Wendepunkt. Sie schneidet die x-Achse mit der Steigung m = 4
Gesuch ist die Gleichung der Parabal

f(x) = a [mm] x^4 [/mm] + b [mm] x^3 [/mm] + c [mm] x^2 [/mm] + dx + e
f'(x) = 4a [mm] x^3 [/mm] + 3b [mm] x^2 [/mm] + 2xc + d
f''(x) = 12a [mm] x^2 [/mm] + 6bx + 2c

Bedingung: geht durch Nullpunkt, d. h,
0 = e

Bedingung hat im Nullpunkt einen Terrassenpunkt, d. h.
f'(0) = 0
f''(0) = 0
0 = d
0 = 2c

Nun mache ich mal die Funktionsgleichung etwas kürzer....
f(x) = a [mm] x^4 [/mm] + b [mm] x^3 [/mm]
f'(x) = 4a [mm] x^3 [/mm] + 3b [mm] x^2 [/mm]
f''(x) = 12a [mm] x^2 [/mm] + 6bx

Bedingung: Wendepunkt bei x = 1
f''(1)= 0
0 = 12a + 6b

Nun versuche ich die komplette Funktion durch a auszudrücken b = -2a
d. h.
f(x) = a [mm] x^4 [/mm] -a [mm] x^3 [/mm]
f'(x) = 4a [mm] x^3 [/mm] -6a [mm] x^2 [/mm]

versuche letzte Bedingung : Schneidet die X-Achse mit einer Steigung von m=4 einzubauen
f(x) = 0
0 = a [mm] x^4 [/mm] -a [mm] x^3 [/mm]
0 = [mm] x^3 [/mm] (ax-a)   da komme ich auf die Werte x1 = 0 und x2 = 1
f'(x) = 4
4 = 4a - 6a
a = -2

Setze ich nun in Funktion ein
f(x)= -2x ^4 [mm] +2x^3 [/mm]

Kann mir jemand sagen, wo der Fehler liegt?
Besten Dank

        
Bezug
Polynomfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 Do 09.10.2008
Autor: abakus


>
> http://www.onlinemathe.de/forum/Polynomfunktion-Wo-liegt-Fehler
>  Eine Parabel 4. Ordnung hat im Nullpunkt einen
> Terassenpunkt und bei x=1 eine weiteren Wendepunkt. Sie
> schneidet die x-Achse mit der Steigung m = 4
>  Gesuch ist die Gleichung der Parabal
>  
> f(x) = a [mm]x^4[/mm] + b [mm]x^3[/mm] + c [mm]x^2[/mm] + dx + e
>  f'(x) = 4a [mm]x^3[/mm] + 3b [mm]x^2[/mm] + 2xc + d
>  f''(x) = 12a [mm]x^2[/mm] + 6bx + 2c
>  
> Bedingung: geht durch Nullpunkt, d. h,
>  0 = e
>  
> Bedingung hat im Nullpunkt einen Terrassenpunkt, d. h.
>  f'(0) = 0
>  f''(0) = 0
>  0 = d
>  0 = 2c
>  
> Nun mache ich mal die Funktionsgleichung etwas kürzer....
>  f(x) = a [mm]x^4[/mm] + b [mm]x^3[/mm]
>  f'(x) = 4a [mm]x^3[/mm] + 3b [mm]x^2[/mm]
> f''(x) = 12a [mm]x^2[/mm] + 6bx
>  
> Bedingung: Wendepunkt bei x = 1
>  f''(1)= 0
> 0 = 12a + 6b
>  
> Nun versuche ich die komplette Funktion durch a
> auszudrücken b = -2a
>  d. h.
> f(x) = a [mm]x^4[/mm] -a [mm]x^3[/mm]
>  f'(x) = 4a [mm]x^3[/mm] -6a [mm]x^2[/mm]
>
> versuche letzte Bedingung : Schneidet die X-Achse mit einer
> Steigung von m=4 einzubauen

Das heißt: in einem der Schnittpunkte mit der x-Achse (es gibt zwei davon, weil  f(x) = a [mm]x^4[/mm] -a [mm]x^3[/mm] ZWEI Nullstellen hat,
ist die Ableitung 4. Welches sind die 2 Nullstellen?
Gruß Abakus




>  f(x) = 0
>  0 = a [mm]x^4[/mm] -a [mm]x^3[/mm]
>  0 = [mm]x^3[/mm] (ax-a)   da komme ich auf die Werte x1 = 0 und x2
> = 1
>  f'(x) = 4
>  4 = 4a - 6a
>  a = -2
>  
> Setze ich nun in Funktion ein
>  f(x)= -2x ^4 [mm]+2x^3[/mm]
>  
> Kann mir jemand sagen, wo der Fehler liegt?
>  Besten Dank


Bezug
        
Bezug
Polynomfunktion: Dein Fehler
Status: (Antwort) fertig Status 
Datum: 21:10 Do 09.10.2008
Autor: Loddar

Hallo Dinker!



> Nun versuche ich die komplette Funktion durch a
> auszudrücken b = -2a

[ok]


> d. h. f(x) = a [mm]x^4[/mm] -a [mm]x^3[/mm]

Und wo ist hier der Faktor $2_$ verblieben vor dem 2. Term? Daher erhältst Du später auch ein falsche Nullstelle.


Gruß
Loddar


Bezug
                
Bezug
Polynomfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:17 Do 09.10.2008
Autor: Dinker

Hallo
Hätte ich:     f(x) = a [mm] x^4 [/mm] -2a [mm] x^3 [/mm]   eingesetzt, dann sollte es stimmen?
Wäre ausser diesem kleinen Missgeschick sonst alles richtig?

besten Dank
Gruss

Bezug
                        
Bezug
Polynomfunktion: prinzipiell richtig
Status: (Antwort) fertig Status 
Datum: 21:21 Do 09.10.2008
Autor: Loddar

Hallo Dinker!


> Hätte ich:     f(x) = a [mm]x^4[/mm] -2a [mm]x^3[/mm]   eingesetzt, dann sollte es stimmen?

[ok] Ja!


> Wäre ausser diesem kleinen Missgeschick sonst alles richtig?

[ok] Natürlich dann mit anderer Nullstelle und auch anderen Werte am Ende für $a_$ und $b_$ .
Aber der prinzipielle Weg war / ist richtig ...


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]