Polynome < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei D : [mm] \IC[/mm] [t][mm] _{\le 3 } \Rightarrow \IC[/mm] [t][mm] _{\le 2}, [/mm]
p = [mm] \summe_{j=0}^{3} a_{j}t^{j} \mapsto [/mm] D (p):= 3 [mm] a_{3}t^{2} [/mm] + 2 [mm] a_{2}t [/mm] + [mm] a_{1} [/mm] .
(i) Zeigen Sie, dass D linear ist.
(ii) Bestimmen Sie die Matrixdarstellung von D bezüglich der Basen [mm] B_{1} [/mm] := {1, t, [mm] t^{2}, t^{3}} [/mm] von [mm] \IC[/mm] [t][mm] _{\le 3 } [/mm] und [mm] B_{2} [/mm] := {1, t, [mm] t^{2}} [/mm] von [mm] \IC[/mm] [t][mm] _{\le 2 }.
[/mm]
(iii) Bestimmen Sie den Kern und das Bild von [mm] [D]_{B_{1} B_{2}}. [/mm]
(iv) Bestimmen Sie den Kern und das Bild von D.
(v) Seien [mm] B_{1} [/mm] (schlange) [mm] :={t^{3},t^{2},t,1} [/mm] und [mm] B_{2} [/mm] (schlange) [mm] :={1,1+t,1+t+t^{2}} [/mm] Basen von [mm] \IC[/mm] [t][mm] _{\le 3 } [/mm] und [mm] \IC[/mm] [t][mm] _{\le 2 } [/mm] . Bestimmen Sie die Basisübergangsmatrizen [mm] [id]_{B_{1} (schlange),B_{1}}, [id]_{B_{1} ,B_{1} (schlange)}, [id]_{B_{2} (schlange),B_{2}} [/mm] und [mm] [id]_{B_{2},B_{2} (schlange)}. [/mm] |
Hallo =)
Bei der Aufgabe habe ich einige Probleme.
Fangen wir mal mit i) an: D ( [mm] \summe_{j=0}^{3} a_{j}t_{1}^{j} [/mm] + [mm] \summe_{j=0}^{3} a_{j}t_{2}^{j} [/mm] ) = [mm] 3a_{3}t_{1}^{2} [/mm] + [mm] 2a_{2}t_{1}+a_{1}+3a_{3}t_{2}^{2} [/mm] + [mm] 2a_{2}t_{2}+a_{1}
[/mm]
[mm] \gdw [/mm] D ( [mm] a_{0}+ a_{1}t_{1}+a_{2}t_{1}^{2}+a_{3}t_{1}^{3}+a_{0}+ a_{1}t_{2}+a_{2}t_{2}^{2}+a_{3}t_{2}^{3} [/mm] ) = [mm] 3a_{3} (t_{1}^{2}+t_{2}^{2}) [/mm] + [mm] 2a_{2} (t_{1}+t_{2}) [/mm] + [mm] 2a_{1} [/mm]
[mm] \gdw [/mm] D ( [mm] a_{3}( (t_{1}^{3})+t_{2}^{3}) [/mm] + [mm] a_{2}( (t_{1}^{2})+t_{2}^{2}) +a_{1} (t_{1}+t_{2}) [/mm] + [mm] a_{0} [/mm] ) = [mm] 3a_{3} (t_{1}^{2}+t_{2}^{2}) [/mm] + [mm] 2a_{2} [/mm] ( [mm] t_{1} [/mm] + [mm] t_{2} [/mm] ) + [mm] 2a_{1}
[/mm]
[mm] \gdw [/mm] D ( [mm] \summe_{j=0}^{3} a_{j} [/mm] ( [mm] t_{1}^{j}+t_{2}^{j}) [/mm] = [mm] 3a_{3} (t_{1}^{2}+t_{2}^{2}) [/mm] + [mm] 2a_{2} (t_{1}+t_{2}) [/mm] + [mm] 2a_{1} [/mm]
D(x p) = x D(p)
[mm] \gdw [/mm] D (x [mm] \summe_{j=0}^{3} a_{j}t^{j} [/mm] ) = x [mm] (3a_{3}t^{2} [/mm] + [mm] 2a_{2}t+2a_{1})
[/mm]
[mm] \gdw [/mm] D (x [mm] \summe_{j=0}^{3} [/mm] x [mm] a_{j}t^{j} [/mm] ) = x [mm] (3a_{3}t^{2} [/mm] + [mm] 2a_{2}t+2a_{1})
[/mm]
[mm] \gdw [/mm] x [mm] (3a_{3}t^{2} [/mm] + [mm] 2a_{2}t+2a_{1}) [/mm] = x [mm] (3a_{3}t^{2} [/mm] + [mm] 2a_{2}t+2a_{1})
[/mm]
Geht das so?
Ich habe diese Frage in keinem anderen Forum oder auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:17 Di 03.07.2012 | Autor: | Marcel |
Hallo,
> Sei D : [mm]\IC[/mm] [t][mm]_{\le 3 } \Rightarrow \IC[/mm] [t][mm]_{\le 2},[/mm]
> p = [mm]\summe_{j=0}^{3} a_{j}t^{j} \mapsto[/mm] D (p):= 3 [mm]a_{3}t^{2}[/mm] + 2 [mm]a_{2}t[/mm] + [mm]a_{1}[/mm] .
> (i) Zeigen Sie, dass D linear ist.
> ...
> Hallo =)
>
> Bei der Aufgabe habe ich einige Probleme.
>
> Fangen wir mal mit i) an: D ( [mm]\summe_{j=0}^{3} a_{j}t_{1}^{j}[/mm] + [mm]\summe_{j=0}^{3} a_{j}t_{2}^{j}[/mm] )
was machst Du da? Du hast (zunächst etwa) zu zeigen: Wenn [mm] $p=p(t)=\sum_{j=0}^3 a_j t^j$ [/mm] und [mm] $q=q(t)=\sum_{j=0}^3 b_j t^j\,,$ [/mm] dann ist
[mm] $$(\*)\;\;\;D(p+q)=D(p)+D(q)\,.$$
[/mm]
Mach' Dir doch erstmal klar, was da steht: [mm] $p\,,q$ [/mm] sind komplexwertige Polynome vom Grad [mm] $\le [/mm] 3$ in der komplexen Variablen $t [mm] \in \IC\,.$ $D(p)\,$ [/mm] bildet das Polynom [mm] $p\,$ [/mm] auf seine Ableitung (was wieder ein Polynom, und zwar vom Grad [mm] $\le [/mm] 2$ ist), ab.
Es kann sein, dass ihr noch nicht im komplexen mit (holomorphen bzw. analytischen) Funktionen gearbeitet habt. Nimm' mal die Aufgabe und "übersetze" sie auf Funktion [mm] $\IR \to \IR\,.$ [/mm] Dann siehst Du, was ich meine - alleine mit Wissen aus der Schulmathematik.
P.S.
Du kannst auch so arbeiten:
Du schreibst
[mm] $$p=p(t)=\sum_{j=0}^3 {^{(p)}a_j} t^j\,,$$
[/mm]
und bei den Koeffizienten [mm] $^{(p)}a_j$ [/mm] soll das vorangestellte [mm] $\text{hoch }{p}$ [/mm] nur bedeuten, dass der Koeffizient sich auf eine Funktion namens [mm] $p\,$ [/mm] bezieht!
P.P.S.
1.) Und natürlich siehst Du:
Wenn [mm] $p=p(t)=\sum_{j=0}^3 a_j t^j$ [/mm] und [mm] $q=q(t)=\sum_{j=0}^3 b_j t^j\,,$ [/mm] dann ist [mm] $p+q=(p+q)(t)=p(t)+q(t)=\ldots=\sum_{j=0}^3 (a_j+b_j) t^j\,.$$
[/mm]
(Edit: Copy&Paste-Fehler entfernt!)
Daher gilt per Definitionem von [mm] $D\,$ [/mm] dann
[mm] $$(\*\*)\;\;\;D(p+q)=D(p+q)(t)=\sum_{j=1}^3 j*(a_j+b_j)t^{j-1}\,.$$
[/mm]
Was ist dann $D(p)+D(q)=D(p)(t)+D(q)(t)$ im Vergleich mit [mm] $(\*\*)$? [/mm] Was haben wir dann gezeigt? (Erinnere Dich an [mm] $(\*)$!)
[/mm]
2.) Der Einfachheit halber habe ich, wenn ich eine Funktion $f: M [mm] \to [/mm] N$ habe und [mm] $f\,$ [/mm] über eine Funktionsvorschrift $M [mm] \ni [/mm] m [mm] \mapsto [/mm] f(m)$ definiert ist, geschrieben, dass $f=f(m)$ die Funktion sei. Das ist unsauber, aber praktisch. Wenn Du genau arbeiten willst, dann könnte man das etwa so aufschreiben:
Ist $p: [mm] \IC \to \IC$ [/mm] eine komplexwertige Polynomfunktion vom Grad [mm] $\le [/mm] 3$ in einer komplexen Variablen, also [mm] $\IC \ni [/mm] t [mm] \mapsto p(t):=\sum_{j=0}^3 {^{(p)}a_j t^j}$ [/mm] mit [mm] $^{(p)}a_j \in \IC$ [/mm] für [mm] $j=0,1,2,3\,,$ [/mm] dann ist $D(p): [mm] \IC \to \IC$ [/mm] die folgende komplexwertige Polynomfunktion vom Grad [mm] $\le [/mm] 2$ in einer komplexen Variablen gegeben wie folgt:
$D(p): [mm] \IC \to \IC$ [/mm] ist gegeben durch [mm] $\IC \ni [/mm] t [mm] \mapsto (D(p))(t):=\sum_{j=1}^3 j*\;^{(p)}a_j t^{j-1}\,.$
[/mm]
Gruß,
Marcel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:20 Di 03.07.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|