Polynome < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Seien K ein Körper, n [mm] \in \IN [/mm] \ [mm] \{0}, [/mm] A [mm] \in [/mm] Mn (n im Index) (K) und
[mm] P=amX^m+ [/mm] am-1 [mm] (A^m-1) +.....+a2X^2+ [/mm] a1X+a0 [mm] \in [/mm] K [X], so dass [mm] P(0)\not=0.
[/mm]
Zeigen Sie:
[P(a):=0]--> [A ist invertierbar und A ^-1= [mm] -a0^-1(am(A^m-1) [/mm] + am-1 [mm] (X^m-2) [/mm] +....+a2A+a1In)], wobei [mm] P(A):=amA^m+ [/mm] am-1 [mm] (A^m-1) [/mm] +...+ [mm] a2A^2+ [/mm] a1A+ a0In.
alles, was hinter dem a steht, ist ein Index, ich weiß nur nicht wie das geht.A hoch m-1 und so weiter, da sollen die Zahlen mit im Exponenten stehen, habe ich irgendwie auch nicht hingekriegt :(
|
Hallo!
Ich habe die Aufgabe gesehen und das erste,was ich dachte, war : HILFE!
Wenn A invertierbar ist, dann muss ja A*A^-1=A^-1*A0 In sein, richtig? und A=(A^-1)^-1....
Wie zeigt man jetzt das, was man zeigen soll? (Wie geht man da heran...brauche jemanden, der "laut" denkt, damit ich alles gut nachvollziehen kann :O) )
LG
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:59 Fr 06.04.2007 | Autor: | felixf |
> Seien K ein Körper, n [mm]\in \IN[/mm] \ [mm]\{0},[/mm] A [mm]\in[/mm] Mn (n im Index)
> (K) und
> [mm]P=amX^m+[/mm] am-1 [mm](A^m-1) +.....+a2X^2+[/mm] a1X+a0 [mm]\in[/mm] K [X], so
> dass [mm]P(0)\not=0.[/mm]
> Zeigen Sie:
> [P(a):=0]--> [A ist invertierbar und A ^-1=
> [mm]-a0^-1(am(A^m-1)[/mm] + am-1 [mm](X^m-2)[/mm] +....+a2A+a1In)], wobei
> [mm]P(A):=amA^m+[/mm] am-1 [mm](A^m-1)[/mm] +...+ [mm]a2A^2+[/mm] a1A+ a0In.
> alles, was hinter dem a steht, ist ein Index, ich weiß nur
> nicht wie das geht.A hoch m-1 und so weiter, da sollen die
> Zahlen mit im Exponenten stehen, habe ich irgendwie auch
> nicht hingekriegt :(
Du meinst sicher folgende Aufgabenstellung (schau dir den Quelltext an, dann weisst du wie man sowas hier schreibt):
> Seien K ein Körper, [mm]n \in \IN \setminus \{0\}[/mm], [mm]A \in M_n(K)[/mm] und
> [mm]P=a_mX^m+ a_{m-1} A^{m-1} +.....+a_2X^2+a_1X+a_0\in K [X] [/mm], so
> dass [mm]P(0)\neq 0[/mm].
> Zeigen Sie:
> [mm][P(A)=0] \Rightarrow [A \text{ ist invertierbar und } A^{-1}= -a_0^-1(a_m(A^{m-1}) + a_{m-1} (A^{m-2}) +....+a_2 A+a_1 I_n)][/mm], wobei
> [mm]P(A):=a_m A^m+ a_{m-1} A^{m-1} +...+ a_2 A^2+ a_1 A+ a_0 I_n[/mm].
Oder?
Die Gleichung $P(A) = 0$ bedeutet ja [mm] $a_m A^m+ a_{m-1} A^{m-1} [/mm] +...+ [mm] a_2 A^2+ a_1 [/mm] A + [mm] a_0 I_n [/mm] = 0$, und es ist $P(0) = [mm] a_0$, [/mm] womit $P(A) [mm] \neq [/mm] 0$ gerade [mm] $a_0 \neq [/mm] 0$ bedeutet. Also ist [mm] $a_m A^m+ a_{m-1} A^{m-1} [/mm] +...+ [mm] a_2 A^2+ a_1 [/mm] A = [mm] -a_0 I_n$ [/mm] mit [mm] $-a_0 \neq [/mm] 0$. Jetzt klammer auf der linken Seite mal $A$ aus und multipliziere mit einer passenden Konstanten [mm] $\neq [/mm] 0$; dann bekommst du, dass $A$ invertierbar ist und dass $A$ von der geforderten Form ist.
> Wenn A invertierbar ist, dann muss ja A*A^-1=A^-1*A0 In
> sein, richtig? und A=(A^-1)^-1....
Du meinst:
> Wenn A invertierbar ist, dann muss ja [mm] A*A^{-1}=A^{-1}*A = I_n[/mm]
> sein, richtig? und [mm]A=(A^{-1})^{-1}[/mm]....
Ja. Bzw. die erste Gleichung ist sogar aequivalent dazu, dass $A$ invertierbar ist.
LG Felix
|
|
|
|
|
Hi!
Also deine Schreibweise ist genau das, was ich meine ;o)
Was meinst du mit: mit einer Konstanten [mm] \not= [/mm] multiplizieren (Woher weiß ich, welche Konstante [mm] \not=0 [/mm] ist? Ich kenne da nur die 1??!)
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:01 So 08.04.2007 | Autor: | felixf |
Hallo!
> Also deine Schreibweise ist genau das, was ich meine ;o)
> Was meinst du mit: mit einer Konstanten [mm]\not=[/mm]
> multiplizieren (Woher weiß ich, welche Konstante [mm]\not=0[/mm]
> ist? Ich kenne da nur die 1??!)
Du weisst, dass [mm] $a_0 \neq [/mm] 0$ ist. Und ebenso auch [mm] $a_0^{-1}$. [/mm] Multipliziere mal die ganze Gleichung mit einem von beiden.
LG Felix
|
|
|
|
|
Ok, aber das sagt mir noch immer nichts...
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:56 Mi 11.04.2007 | Autor: | felixf |
Hallo.
> Ok, aber das sagt mir noch immer nichts...
> Ich hätte da noch eine Frage: Und zwar habe ich A ausgeklammert, ich
> frage mich allerdings, ob das überhaupt geht...?
In jedem Summand kommt $A$ mindestens einmal vor: du hast da [mm] $a_m A^m [/mm] + [mm] a_{m-1} A^{m-1} [/mm] + [mm] \dots [/mm] + [mm] a_2 A^2 [/mm] + [mm] a_1 [/mm] A$ stehen. Der einzige Summand, in dem kein $A$ vorkommt, befindet sich auf der anderen Seite des Gleichheitszeichens, der stoert also nicht.
> Und ich frage mich auch,
> was es bringt, dann mit einer Konstanten zu multiplizieren? Das ist mir leider
> noch nicht klar geworden...
Du hast da jetzt stehen: $A [mm] \cdot (\text{ polynomieller Ausdruck in \(A\) } [/mm] = [mm] a_0 \cdot E_n$. [/mm] Und du hattest gerne $A [mm] \cdot \text{irgendetwas} [/mm] = [mm] E_n$. [/mm] Also musst du das [mm] $a_0$ [/mm] loswerden, und du weisst dass [mm] $a_0 \neq [/mm] 0$ ist.
LG Felix
|
|
|
|
|
Ok, dann habe ich es richtig gemacht. und dás war die ganze aufgabe?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:17 Do 12.04.2007 | Autor: | felixf |
> Ok, dann habe ich es richtig gemacht. und dás war die ganze
> aufgabe?
Zumindest die ganze Aufgabe, die du hier reingestellt hast.
LG Felix
|
|
|
|