matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Polynomdivision
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Polynomdivision
Polynomdivision < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynomdivision: "letztes Schrittchen"/Vorgehen
Status: (Frage) beantwortet Status 
Datum: 12:55 Sa 20.09.2008
Autor: Loewenzahn

Aufgabe 1
[mm] (12a^2+ab-17ac-20b^2+29bc-5c^2):(3a+4b-5c)=4a-5b [/mm] +c

Aufgabe 2
[mm] (q^n-1):(q-1)=q^{n-1}+q^{n-2}+\ldots [/mm] +q+1;

ZU 1)
Bis auf den fettmarkierten Teil stimmen diese und meine Lösung überein.
Dieses bekomme ich ebenfalls, wenn ich den verbleibenden "Rest" des Zählers (der kein "a" mehr enthält) teile.
Allerdings muss man hierzu den Teiler "4b" und NICHT "3a" nehmen!Dieses "Auslassen des ersten Gliedes in mehrteiligen Teilern" ist mir neu, wo wird diese Vorgehensweise nochmal genauer erklärt?
Müssten man, sobald der Zählerausdruck kein "a" mehr enthält, nicht diesen als "Quotientenrest" in die Lösung schreiben??
ZU 2)
Wie in drei Teufels Namen komme ich auf das Fettgedruckte?? Wenn ich mir die Lösung so ansehe (bis dahin ident.!), dann müsste der Exponent sich doch unendlich so weiterentwickeln (^{n-3}, ^{n-4}, ...) , und wie kommt dann dieses "q+1" zu stande(<--Denn das würde ja heißen, der "Zähler" müsste irgendwann von [mm] q^{n-x} [/mm] auf [mm] q^{2} [/mm] bzw [mm] q^{1})? [/mm]
Ich weiß, dass ich den Clou an der Sache schon mal wusste, aber komm wieder nicht drauf :-P Erleuchtet mich ma!
Dankö etz scho sehr ;-)

        
Bezug
Polynomdivision: Antwort
Status: (Antwort) fertig Status 
Datum: 13:34 Sa 20.09.2008
Autor: schachuzipus

Hallo Loewenzahn,

> [mm](12a^2+ab-17ac-20b^2+29bc-5c^2):(3a+4b-5c)=4a-5b[/mm] +c
>  [mm](q^n-1):(q-1)=q^{n-1}+q^{n-2}+\ldots[/mm] +q+1;
>  
> ZU 1)
>  Bis auf den fettmarkierten Teil stimmen diese und meine
> Lösung überein.
>  Dieses bekomme ich ebenfalls, wenn ich den verbleibenden
> "Rest" des Zählers (der kein "a" mehr enthält) teile.
> Allerdings muss man hierzu den Teiler "4b" und NICHT "3a"
> nehmen!Dieses "Auslassen des ersten Gliedes in mehrteiligen
> Teilern" ist mir neu, wo wird diese Vorgehensweise nochmal
> genauer erklärt?

Hmm, das obige Ergebnis stimmt! Dh. du wirst dich irgendwo beim Zusammenrechnen verschustert haben ...

>  Müssten man, sobald der Zählerausdruck kein "a" mehr
> enthält, nicht diesen als "Quotientenrest" in die Lösung
> schreiben??

Es "bleibt" bei der ganzen Rechnung ein a im Zähler, um es mal mit deinen Worten zu sagen.

Vllt. ist es am besten, wenn du mal deine Rechnung postest, dann sehen wir bestimmt den Fehler, denn - wie gesagt - die PD geht wunderbar auf ...
Also gibt's keinen "Quotientenrest"

>  ZU 2)
>  Wie in drei Teufels Namen komme ich auf das
> Fettgedruckte?? Wenn ich mir die Lösung so ansehe (bis
> dahin ident.!), dann müsste der Exponent sich doch
> unendlich so weiterentwickeln (^{n-3}, ^{n-4}, ...)

Nein, das n ist zwar beliebig, aber doch endlich, also bricht die Polynopmdivision nach endlich vielen (=n) Schritten ab (und geht auf, wie in der Lösung!)

>, und wie kommt dann dieses "q+1" zu stande(<--Denn das würde ja

> heißen, der "Zähler" müsste irgendwann von [mm]q^{n-x}[/mm] auf
> [mm]q^{2}[/mm] bzw [mm]q^{1})?[/mm]
>  Ich weiß, dass ich den Clou an der Sache schon mal wusste,
> aber komm wieder nicht drauf :-P Erleuchtet mich ma!

[idee]

So? ;-)

Nein, im Ernst: Im Zähler musst du ja nach jedem Schritt der Polynomdivision das [mm] \red{-1} [/mm] mit "runterholen", du hast also als Rest

nach dem 1. Schritt: [mm] $q^{n-1}\red{-1}$ [/mm]
nach dem 2. Schritt: [mm] $q^{n-2}\red{-1}$ [/mm]
nach dem 3. Schritt: [mm] $q^{n-3}\red{-1}$ [/mm]
nach dem 4. Schritt: [mm] $q^{n-4}\red{-1}$ [/mm]
...
nach dem (n-3). Schritt: [mm] $q^{n-(n-3)}\red{-1}=q^3-1$ [/mm]
nach dem (n-2). Schritt: [mm] $q^{n-(n-2)}\red{-1}=q^2-1$ [/mm]
nach dem (n-1). Schritt: [mm] $q^{n-(n-1)}\red{-1}=q-1$ [/mm]
nach dem n.Schritt: $0$

Also geht's im letzten Schritt auch auf ...

Mit jedem Schritt wird also der Exponent von q um 1 vermindert, die -1 steht immer hintendran

>  Dankö etz scho sehr ;-)


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]