matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikPolynomdivision
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Finanzmathematik" - Polynomdivision
Polynomdivision < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynomdivision: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:16 Di 20.07.2004
Autor: lomac

Ich bin zur Zeit dabei mein "altes Mathewissen" wieder aufzufrischen. Der Grund dafür ist ein Studium (Bachelor of Finance), das ich neben meinem Beruf beginnen möchte. Mein Mathewissen liegt allerdings schon viele Jahre zurück.

Kann mir bitte jemand zu folgender Aufgabe einige hilfreiche Informationen geben ?
[mm] P5(x)=x^5+3x^4+5x^3+11x^2-20 [/mm]

Wie kommt man darauf, dass durch den Quotienten [mm] (x^2+x-2) [/mm] geteilt werden soll ?

Nach der Division lautet [mm] P5(x)=(x^3+2x^2+5x+10)(x-1)(x+2) [/mm]

Ich habe diese Frage in keinem weiteren Forum gestellt.

        
Bezug
Polynomdivision: Antwort
Status: (Antwort) fertig Status 
Datum: 18:32 Di 20.07.2004
Autor: Brigitte

Hallo lomac!

> Ich bin zur Zeit dabei mein "altes Mathewissen" wieder
> aufzufrischen. Der Grund dafür ist ein Studium (Bachelor of
> Finance), das ich neben meinem Beruf beginnen möchte. Mein
> Mathewissen liegt allerdings schon viele Jahre zurück.

Wow, das finde ich gut.
  

> Kann mir bitte jemand zu folgender Aufgabe einige
> hilfreiche Informationen geben ?
>  [mm]P5(x)=x^5+3x^4+5x^3+11x^2-20 [/mm]
>  
> Wie kommt man darauf, dass durch den Quotienten [mm](x^2+x-2)[/mm]
> geteilt werden soll ?

Bei Polynomen von großem Grad muss man Nullstellen raten, um den Grad zu erniedrigen. Dass $x=1$ eine Nullstelle ist, findet man leicht heraus. Im Übrigen ist es oft hilfreich, sich die Primteiler vom $y$-Achsenabschnitt (also der Koeffizient ohne [mm] $x^k$, [/mm] hier die 20) anzuschauen. Da 20 recht viele Primteiler hat (jeweils mit negativem und positivem Vorzeichen), kann das lange dauern. Zum Glück kommt man aber hier ja gleich mit der -2 als zweiter Nullstelle weiter. Bei der Polynomdivision teile ich nun durch die Linearfaktoren, die zu den erwähnten Nullstellen gehören. Zur Nullstelle $a$ lautet der Linearfaktor $(x-a)$. Hier haben wir ja gleich zwei Nullstellen, also teilt man in der Polynomdivision durch das Produkt
[mm] $(x-1)(x+2)=(x^2+x-2)$. [/mm] Man hätte aber auch noch mehr Nullstellen raten können (wenn man wollte). Kannst Du ja mal ausprobieren. Es kann auch sein, dass manche Nullstellen mehrfach vorkommen. Das erkennst Du, wenn Du nach Nullstellen von dem Polynom [mm] $x^3+2x^2+5x+10$ [/mm] suchst.
  

> Nach der Division lautet [mm]P5(x)=(x^3+2x^2+5x+10)(x-1)(x+2) [/mm]

Viele Grüße
Brigitte

Bezug
        
Bezug
Polynomdivision: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Do 22.07.2004
Autor: lomac

Vielen Dank Brigitte

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]