matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikPolyedertheorie - Irredundanz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Numerik" - Polyedertheorie - Irredundanz
Polyedertheorie - Irredundanz < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polyedertheorie - Irredundanz: Beweisidee
Status: (Frage) überfällig Status 
Datum: 15:10 So 30.04.2017
Autor: kakarade

Schön Sonntag allen,

ich muss für die Abgabe meines Kurses in diskreter Optimierung folgende beiden Fragen beantworten. Mir fehlt irgendwie schon der komplette Ansatz wie ich die Fragen angehe. Kann sich jemand bitte die beiden Fragen anschauen und mir vielleicht den Lösungsweg erklären? Oder mir eine Idee geben, wie ich die beiden Frage beweise?

"Berechnen wir mittels Fourier-Motzkin-Elimination die Projektion Q := [mm] Proj_{k}(P(A, [/mm] b)) eines Polyeders
P(A, b), so erhalten wir eine Ungleichungsbeschreibung des Polyeders Q.
(a) Gebe ein Beispiel für ein voll-dimensionales Polyeder P := P(A, b) an, so dass das System Ax [mm] \le [/mm] b
irredundant ist, d.h. jede Ungleichung des Systems definiert eine Facette von P, das resultierende
System für Q jedoch Redundanzen enthält.
(b) Gebe ein Verfahren an, das entscheidet, ob eine Ungleichung des resultierenden Systems für Q
redundant ist. Die Laufzeit des Verfahrens soll dabei polynomiell in der Kodierungslänge von P
sein."

PS.: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Vielen Dank schon mal an Alle und ein schönes verlängertes Wochenende euch noch :)

        
Bezug
Polyedertheorie - Irredundanz: Antwort
Status: (Antwort) fertig Status 
Datum: 09:28 Mi 03.05.2017
Autor: meili

Hallo kakarade und

[willkommenmr]

> Schön Sonntag allen,
>  
> ich muss für die Abgabe meines Kurses in diskreter
> Optimierung folgende beiden Fragen beantworten. Mir fehlt
> irgendwie schon der komplette Ansatz wie ich die Fragen
> angehe. Kann sich jemand bitte die beiden Fragen anschauen
> und mir vielleicht den Lösungsweg erklären? Oder mir eine
> Idee geben, wie ich die beiden Frage beweise?

Bei gar keiner Idee ist immer folgendes zu empfehlen:
Definitionen aller unklaren oder neuen Begriffe heraussuchen.
z.B.: []Fourier-Motzkin-Elimination

>  
> "Berechnen wir mittels Fourier-Motzkin-Elimination die
> Projektion Q := [mm]Proj_{k}(P(A,[/mm] b)) eines Polyeders
>  P(A, b), so erhalten wir eine Ungleichungsbeschreibung des
> Polyeders Q.
>  (a) Gebe ein Beispiel für ein voll-dimensionales Polyeder
> P := P(A, b) an, so dass das System Ax [mm]\le[/mm] b
>  irredundant ist, d.h. jede Ungleichung des Systems
> definiert eine Facette von P, das resultierende
>  System für Q jedoch Redundanzen enthält.

Am besten ein möglichst einfaches Beispiel, das auch noch anschaulich ist,
(also aus [mm] $\IR^2$ [/mm] oder [mm] $\IR^3$) [/mm] suchen. Vielleicht geht das Beispiel aus Wikipedia (siehe oben)

>  (b) Gebe ein Verfahren an, das entscheidet, ob eine
> Ungleichung des resultierenden Systems für Q
>  redundant ist. Die Laufzeit des Verfahrens soll dabei
> polynomiell in der Kodierungslänge von P
>  sein."

Lässt sich das mit dem Algorithmus für die Fourier-Motzkin-Elimination
entscheiden?
Oder indem man die erhaltene Matrix umformt und Nullzeilen erhält?

>  
> PS.: Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Vielen Dank schon mal an Alle und ein schönes
> verlängertes Wochenende euch noch :)

Gruß
meili


Bezug
        
Bezug
Polyedertheorie - Irredundanz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mi 03.05.2017
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]