matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenOperations ResearchPolyeder P = conv(V) + cone(W)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Operations Research" - Polyeder P = conv(V) + cone(W)
Polyeder P = conv(V) + cone(W) < Operations Research < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polyeder P = conv(V) + cone(W): Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:04 So 08.05.2011
Autor: Gratwanderer

Aufgabe
Seien P ein Polyeder und seien V, W [mm] \subseteq \IR^n. [/mm] Zeigen Sie: P = conv(V) + cone(W) genau dann, wenn x + P = conv(x+V) + cone(W) ist für alle x [mm] \in \IR^n [/mm]

Hallo,

zu obiger Aufgabe habe ich folgendes bereits gemacht:

[mm] \Leftarrow [/mm] :

ang. x + P = conv(x+V) + cone(W) für alle x [mm] \in \IR^n [/mm]

dann gilt dies insbesondere auch für x = 0

[mm] \Rightarrow [/mm] :

ang. P = conv(V) + cone(W)

addiert man auf beiden Seiten den Vektor x

[mm] \gdw [/mm] x + P = x + conv(V) + cone(W)

jetzt habe ich mir überlegt zu zeigen, dass

x + conv(V) = conv(x+V)

und habe so angefangen:

conv(V) = [mm] \{\summe_{i=1}^{n} \lambda_i v_i | v_i \in V, n \in \IN, \summe_{i=1}^{n} \lambda_i = 1; \lambda_i \ge 0 \} [/mm]

jetzt habe ich mir ein bel. Element aus conv(V) rausgenommen und es so aufgeschrieben:

x + conv(V) = x + [mm] \summe_{i=1}^{n} \lambda_i v_i [/mm]

aber jetzt komme ich leider nicht mehr weiter. Könnte mir jemand weiterhelfen?

Viele Grüße,
Gratwanderer

        
Bezug
Polyeder P = conv(V) + cone(W): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:25 So 08.05.2011
Autor: wieschoo

Wenn du x zum Polyeder dazu addierst, dann gilt dies insbesondere auch für die Ecken.

Wenn [mm] $\lambda=(\lambda_1 [/mm] ... [mm] \lambda_n)=e_k$ [/mm] ein Einheitsvektor ist, dann erhälst du in deiner Summe nur die Eckpunkte vom Polyeder.

Damit kannst du das x auf die Ecken schieben (indem du es in die Summe hineinziehst) und hast das, was du brauchst.

Bezug
        
Bezug
Polyeder P = conv(V) + cone(W): Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Di 10.05.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]