matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheoriePoissonverteilung 2.Versuch
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitstheorie" - Poissonverteilung 2.Versuch
Poissonverteilung 2.Versuch < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Poissonverteilung 2.Versuch: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:35 Mo 26.11.2007
Autor: mathe-tu-muenchen

Aufgabe
Ein Reiseunternehmen weiß aus Erfahrung, dass von 100 Personen, die eine Gesellschaftsreise gebucht haben, durchschnittlich vier Personen die Reise nicht antreten. Das Unternehmen verkauft daher für 60 verfügbare Plätze 61 Karten. Berechnen Sie die Wahrscheinlichkeit, dass alle Personen, die die Reise tatsächlich antreten wollen, einen Platz bekommen. Vergleichen Sie ihr Ergebnis mit der Poisson-Approximation.

Ist es richtig wenn ich hier so vorgehe?

p(bekomme Platz) = [mm] \bruch{96}{100} [/mm]
p(bekomme keinen Platz) = [mm] \bruch{4}{100} [/mm]

P(X=60) = [mm] {61\choose 60} \bruch{4^{60}}{100} \bruch{96^1}{100} [/mm]

        
Bezug
Poissonverteilung 2.Versuch: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:44 Mi 28.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]