matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische ProzessePoisson Prozess
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "stochastische Prozesse" - Poisson Prozess
Poisson Prozess < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Poisson Prozess: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:55 Fr 27.01.2006
Autor: TomTom14

Aufgabe
Gegeben sei ein Poisson-Prozess { [mm] N_{t}|t>=0} [/mm] mit Intensität  [mm] \lambda. [/mm] Man berechne für  [mm] \lambda [/mm] = 2
a.) [mm] P(N_{3}=6) [/mm]
b.) [mm] P(N_{3.7}=4|N_{2.1}=2) [/mm]

bei a ist es ja kein Probelm, da bekomm ich 16,06% heraus aber bei b.) kenn ich mich nicht aus. wie muss ich da vorgehen? [mm] P(N_{3.7}=4|N_{2.1}=2) [/mm] was bedeutet der |?
Danke

        
Bezug
Poisson Prozess: Antwort
Status: (Antwort) fertig Status 
Datum: 16:10 Fr 27.01.2006
Autor: Julius

Hallo TomTom14!

Bei der b) handelt es sich um eine bedingte Wahrscheinlichkeit. Es gilt:

[mm] $P(N_{3.7}=4|N_{2.1}=2) [/mm] = [mm] \frac{P(\{N_{3.7} = 4\} \cap \{N_{2.1}=2\})}{P(N_{2.1}=2)}$. [/mm]

Und nun beachte noch, dass

[mm] $\{N_{3.7} = 4\} \cap \{N_{2.1}=2\} [/mm] = [mm] \{N_{2.1}=2\} \cap \{N_{3.7}-N_{2.1} = 2\}$ [/mm]

gilt. Und jetzt kannst du die Unabhängigkeit der Zuwächse bei einem Poisson-Prozess ausnutzen.

(Bemerkung für Moderatoren: Die Frage kann bei "Stochastische Prozesse" einsortiert werden.)

Liebe Grüße
Julius

Bezug
                
Bezug
Poisson Prozess: Frage zum berechnen
Status: (Frage) beantwortet Status 
Datum: 16:09 So 29.01.2006
Autor: TomTom14

Hab eine blöde Frage wie kann ich so eine Ausdruck mit [mm] \cap [/mm] berechnen?

Bezug
                        
Bezug
Poisson Prozess: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 14:17 Mo 30.01.2006
Autor: djmatey

Hallo,
wie Julius ja schon geschrieben hat, gilt
[mm] P(N_{3.7}=4|N_{2.1}=2) [/mm] = [mm] \bruch{P(\{N_{3.7}=4\}\cap\{N_{2.1}=2\})}{P(N_{2.1}=2)} [/mm]
DFa bei Poisson-Prozessen die Zuwächse stochastisch unabhängig sind, kannst Du den Zähler auf der rechten Seite auseinander ziehen:
[mm] P(\{N_{3.7}=4\}\cap\{N_{2.1}=2\}) [/mm] = [mm] P(N_{3.7}=4)*P(N_{2.1}=2) [/mm]
So ist die stochastische Unabhängigkeit von Ereignissen definiert.
Damit kannst Du einen Faktor kürzen:
[mm] P(N_{3.7}=4|N_{2.1}=2) [/mm] = [mm] \bruch{P(\{N_{3.7}=4\}\cap\{N_{2.1}=2\})}{P(N_{2.1}=2)} [/mm] = [mm] \bruch{P(N_{3.7}=4)*P(N_{2.1}=2)}{P(N_{2.1}=2)} [/mm] = [mm] P(N_{3.7}=4) [/mm]
Es gilt also nur noch, diese Wahrscheinlichkeit zu berechnen, wobei Du ja weißt, dass
[mm] N_{t} \sim Poi(\lambda [/mm] t)
Chakka, jetzt schaffst Du's! ;-)
Liebe Grüße,
djmatey

Bezug
                        
Bezug
Poisson Prozess: Antwort
Status: (Antwort) fertig Status 
Datum: 07:44 Di 31.01.2006
Autor: Julius

Hallo TomTom14!

Da, wie gesagt, die Zuwächse (!) stochastisch unabhängig sind, gilt:

[mm] $P(\{N_{2.1} = 2\} \cap \{N_{3.7} - N_{2.1} = 2 \}) [/mm] = [mm] P(\{N_{2.1} = 2\}) \cdot P(\{N_{3.7} - N_{2.1} = 2\})$. [/mm]

Dagegen sind [mm] $N_{2.1}$ [/mm] und [mm] $N_{3.7}$ [/mm] nicht stochastisch unabhängig.

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]