matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikPoisson-Prozess Wartezeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Poisson-Prozess Wartezeit
Poisson-Prozess Wartezeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Poisson-Prozess Wartezeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:35 Mo 06.07.2009
Autor: suzan_7

Hallo,
ich möchte zeigen, wie die Wartezeit T in einem Poisson-Prozess verteilt ist.
dazu möchte ich zeigen, dass die wartezeit auf den ersten Treffer exponentiellverteilt ist und die Wartezeit auf k Treffer, als die Summe über exponentiellverteilte ZV, Gammaverteilt ist.
allerdings scheitere ich gleich am anfang.
also ich weiß,
[mm] f(k)=\bruch{(\lambda*t)^k}{k!} [/mm] * [mm] e^{-\lambda*t} [/mm]
Wenn ich also auf den 1.Treffer warte, berechne ich:
f(1) = [mm] \lambda [/mm] *t * [mm] e^{\lambda*t} [/mm]
aber das ist doch noch nicht die exponentiell verteilt.
mich stört hier noch das [mm] \lambda [/mm] vor dem t. im Exponenten würde es ja passen.
Was mache ich falsch?


        
Bezug
Poisson-Prozess Wartezeit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:37 Mo 06.07.2009
Autor: vivo

Hallo,

im Poissonprozess sind die Anzahl der eingetretenen "was auch immer"   in einem Zeitintervall poisson verteilt. Wenn du jetzt einfach 1 in die possionverteilung einsetzt, dann berechnest du die wkeit für ein Enintreten im Zeitintervall t, aber doch nicht die Wkeit der Länge der Wartezeit.

Dass die Wartezeiten exponential verteilt sind wird in vielen Quellen gezeigt. Schau doch einfach mal in ein Wtheorie Buch deiner Wahl.

gruß

Bezug
                
Bezug
Poisson-Prozess Wartezeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:41 Mo 06.07.2009
Autor: suzan_7

Danke für deine Antwort,
jetzt weiß ich schonmal ungefähr was ich falsch gemacht habe.
aber der tipp, dass ich mal in ein buch schauen soll, ist shcon unverschämt.
würde ich die antwort in einem Buch verstehen, würde ich mir wohl nicht die mühe machen hier zu posten....
ich habs im georgii gelesen... und puhh... bahnhof.
der summiert da wild über gegenws....keine ahnung

Bezug
                        
Bezug
Poisson-Prozess Wartezeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:59 Di 07.07.2009
Autor: vivo

Hallo,

ich habe dir geantwortet was an deiner Überlegung falsch ist und darauf hingewiesen, dass der Beweis für die Verteilung der Wartezeiten in vielen Büchern zu finden ist. Ich kann mir kaum vorstellen, dass dir hier jemand einen dieser Beweise posten wird. Warum auch man braucht ja nur ein Buch aufzuschlagen (oder irgendein Skript in dem das thema behandelt wird). Ich weiß wirklich nicht was du daran unverschämt findest. Falls du sämtlich Beweise in den Büchern nicht verstehst kannst du ja gerne eine konkrete Frage dazu stellen, die wird dir dann hier ziemlich sicher auch jemand beantworten.

viele Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]