matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisPoincaré-Lemma - Beispiel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionalanalysis" - Poincaré-Lemma - Beispiel
Poincaré-Lemma - Beispiel < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Poincaré-Lemma - Beispiel: Verständnis
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:14 Do 01.11.2012
Autor: drix

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Sei $\omega \in \Omega^k_{\infty} (O)$ mit $\omega = \sum_I \omega_I d x^I$.

Wir definieren $P: \Omega^k (O) \rightarrow \Omega^{k-1}(O)$ durch:
P(\omega )^{(k)}:= \sum_I \sum_{s=1}^k (-1)^{s-1} \left( \int_0^1 t^{k-1} \omega_I(tx) dt \right) x^{i_s} dx^{i_1} \land \dots \land \overset{\land}{dx^{i_s}} \land \dots \land dx^{i_k}$

Sei $\omega:~x \normalfont{d} y \land \normalfont{d}z + 2 y\normalfont{d} x \land \normalfont{d} z + z \normalfont{d}x \land \normalfont{d} y \in \Omega^2(\mathfrac{R}^3})$.

Also gilt:

$  P(\omega )$
$= \int_0^1 t(tx)dt\underset{k_1}{\underbrace{(ydz-zdy)}}+2 \int_0^1 t(ty)dt\underset{k_2}{\underbrace{(xdz-zdx)}}+\int_0^1 t(tz)dt\underset{k_3}{\underbrace{(xdy-ydx)}}$
$=\frac{1}{3}(xydz-xzdy)+\frac{2}{3}(xydz-yzdx)+\frac{1}{3} (xzdy-yzdx)$
$=xydz-yzdx$




Dieses Beispiel wurde uns in der Vorlesung gegeben. Die Schritte in der Gleichung sind mir alle klar. Was ich beim nachrechnen nicht verstehe ist, wie ich durch Einsetzen von $\omega$ in die allgemeine Definition von $P$ $k_1, k_2$ und $k_3$ entstehen.

Meiner Auffassung nach müsste doch jedes Integral in der Summe folgendermaßen entstehen (hier als Bsp das erste):

$\int_0^1 t(tx)dt (x (dy \land dz)) - \int_0^1 t(tx)dt (y (dx \land dz))= \int_0^1 t(tx)dt \underset{k_1'}{\underbrace{((x (dy \land dz)) - (y (dx \land dz)))}$

Wobei nun $k_1 = k_1'$ gelten müsste. Allerdings kann ich diese Gleichheit nicht sehen. Bin ich blind, oder habe ich beim Einsetzen einen Fehler gemacht?
Danke im Voraus!
drix

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Poincaré-Lemma - Beispiel: Verstanden!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:27 Fr 02.11.2012
Autor: drix

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Ok, ich habe meinen Fehler gefunden! Wen's interessiert:

$I$ ist ein Multiindex, sodass wir im ersten Fall $y = x^{i_1}$ und $z =x^{i_2}$ haben.

Somit ergibt sich sofort für das Beispiel aus der Frage:

$ \int_0^1 t(tx)dt (ydz)) - \int_0^1 t(tx)dt (z dy))= \int_0^1 t(tx)dt \underset{k_1'}{\underbrace{(ydz -zdy)} $

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]