matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenPicard-Lindelöf Iteration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Picard-Lindelöf Iteration
Picard-Lindelöf Iteration < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Picard-Lindelöf Iteration: Wie gehts weiter?
Status: (Frage) beantwortet Status 
Datum: 21:35 Fr 01.12.2006
Autor: oeli1985

Aufgabe
Lösen sie folgende DGL durch die Picard-Lindelöf Iteration [mm] y_{n+1}= \delta [/mm] + [mm] \integral_{ \lambda}^{x}{f(t,y_{n}(t)) dt} [/mm]

y'=y+x-1, y(0)=1

Hallo zusammen,

ich habe mich an dieser Aufgabe versucht, weiß aber leider überhaupt nicht was das soll. Die einzelnen [mm] y_{n+1} [/mm] zu berechnen ist ja kein Problem, aber wie sieht dann meine y(x) nachher aus?

Also ich habe bisher ausschließlich folgendes:

wähle [mm] y_{0}(x)=1 [/mm] als Startwert

[mm] y_{1}(x)=...=1+ \bruch{1}{2} x^{2} [/mm]
[mm] y_{2}(x)=...=1+ \bruch{1}{6} x^{3}+ \bruch{1}{2} x^{2} [/mm]
.
.
.
[mm] y_{n+1}(x)=...=1+ \summe_{i=1}^{n+1} \bruch{1}{i(i+1)} x^{i+1} [/mm]
[mm] \Rightarrow [/mm] y'= [mm] \summe_{i=1}^{n} \bruch{1}{i} x^{i} [/mm]

Was fang ich jetzt mit dem Zeug an? Kann mir höchsten vorstellen, dass y(x) = "Grenzwert von [mm] y_{n+1}(x) [/mm] für n [mm] \to \infty [/mm] !?

Danke schon mal für eure Hilfe. Grüße, Patrick

        
Bezug
Picard-Lindelöf Iteration: Weiter iterieren...
Status: (Antwort) fertig Status 
Datum: 11:14 Sa 02.12.2006
Autor: Christian

Hallo!

Das [mm] $y_n$, [/mm] was Du Dir überlegt hast, ist so nicht ganz richtig.
Mach einfach nochmal 2 Iterationsschritte, dann siehst Du schon, was rauskommt...

Gruß,
Christian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]