matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenPi berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Komplexe Zahlen" - Pi berechnen
Pi berechnen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Pi berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 Mi 19.03.2008
Autor: nickname

Hi!
Ich soll z= 3-i in Polarkoordinaten darstellen. Dazu berechne ich erstmal r indem ich den Betrag von z nehme das wäre dann [mm] \wurzel{10}. [/mm] Soweit so gut. Jetzt will ich pi berechnen und habe dabei das Problem, dass ich beim besten willen nicht auf den geforderten Wert komme! Laut Lösung sollte es [mm] 341,57\circ [/mm] sein. Ich aber rechne und erhalte: arctan [mm] \bruch{-1}{3}= -18,43\circ [/mm]

Was mache ich falsch??

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Danke für eure hilfe!!
nickname

        
Bezug
Pi berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 Mi 19.03.2008
Autor: MathePower

Hallo nickname,

> Hi!
>  Ich soll z= 3-i in Polarkoordinaten darstellen. Dazu
> berechne ich erstmal r indem ich den Betrag von z nehme das
> wäre dann [mm]\wurzel{10}.[/mm] Soweit so gut. Jetzt will ich pi
> berechnen und habe dabei das Problem, dass ich beim besten
> willen nicht auf den geforderten Wert komme! Laut Lösung
> sollte es [mm]341,57\circ[/mm] sein. Ich aber rechne und erhalte:
> arctan [mm]\bruch{-1}{3}= -18,43\circ[/mm]
>  
> Was mache ich falsch??

[mm]z=3-i=r*\left(\cos\left(\varphi\right)+i*\sin\left(\varphi\right)\right)[/mm]
[mm]\Rightarrow 3 = r*\cos\left(\varphi\right), -1 = r*\sin\left(\varphi\right)[/mm]

Wann ist [mm]\cos\left(\varphi\right) >0[/mm] und [mm]\sin\left(\varphi\right) <0[/mm]?

[mm]\cos\left(\varphi\right) > 0 \Rightarrow 0 < \varphi < \bruch{pi}{2} \vee \bruch{3*\pi}{2} < \varphi < 2\pi[/mm]

[mm]\sin\left(\varphi\right) < 0 \Rightarrow -\pi < \varphi < 2\pi[/mm]

Wir erhalten somit [mm]\bruch{3*\pi}{2} < \varphi < 2\pi[/mm] bzw. [mm] 270^{\circ} < \varphi < 360^{\circ}[/mm]

Da der Sinus und der Cosinus [mm]2\pi[/mm] bzw. [mm]360^{\circ}[/mm]-periodisch sind, ist zu einem negativen Winkel ein Vielfaches von [mm]2\pi[/mm] bzw. [mm]360^{\circ}[/mm] hinzuzuaddieren, so daß dieser positiv wird:

[mm]\varphi= -18,43^{\circ}=-18,43^{\circ}+360^{\circ}=341,57^{\circ}[/mm]

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Danke für eure hilfe!!
>  nickname  

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]