matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheoriePhi(n)< n/4
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - Phi(n)< n/4
Phi(n)< n/4 < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Phi(n)< n/4: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:34 Di 03.06.2014
Autor: AannaLlena

Aufgabe
Finde die kleinste Zahl n [mm] \in \IN [/mm] mit phi(n)= [mm] \bruch{n}{4} [/mm]

Ich habe schon die ersten paar Zahlen ausprobiert, habe aber schnell gemerkt, dass ich so nicht fündig werde.

Wie kann ich an diese Aufgabe heran gehen?

        
Bezug
Phi(n)< n/4: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:48 Di 03.06.2014
Autor: UniversellesObjekt

Edit: Ich hatte die Aufgabe falsch gelesen und meine Antwort passt nicht dazu.
Bezug
        
Bezug
Phi(n)< n/4: Antwort
Status: (Antwort) fertig Status 
Datum: 17:24 Di 03.06.2014
Autor: MaslanyFanclub

Hallo,

nutze [mm] $\frac{\varphi(n)}{n}= \prod_{p |n } (1-\frac{1}{p} [/mm] )$ ( p prim )

Bezug
                
Bezug
Phi(n)< n/4: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:16 Di 03.06.2014
Autor: AannaLlena

Danke für dein Hinweis. Doch leider komme ich trotzdem auf keinen grünen Zweig. Wie muss ich das in Verbindung zu < n/4 bringen?

Bezug
                
Bezug
Phi(n)< n/4: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:18 Di 03.06.2014
Autor: AannaLlena

Danke für dein Hinweis. Doch leider komme ich trotzdem auf keinen grünen Zweig. Wie muss ich das in Verbindung zu < n/4 bringen?


Bezug
                        
Bezug
Phi(n)< n/4: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:43 Di 03.06.2014
Autor: hippias

Was denn nun: Soll [mm] $\phi(n)= \frac{n}{4}$ [/mm] sein oder [mm] $<\frac{n}{4}$? [/mm]

Bezug
                                
Bezug
Phi(n)< n/4: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:52 Di 03.06.2014
Autor: AannaLlena

Das war blöd von mir. Phi (n) muss kleiner als n/4 sein

Bezug
                                        
Bezug
Phi(n)< n/4: Antwort
Status: (Antwort) fertig Status 
Datum: 19:45 Di 03.06.2014
Autor: reverend

Hallo AnnaLena,

> Das war blöd von mir. Phi (n) muss kleiner als n/4 sein

Nimm mal $n=p*q$ mit [mm] p,q\in\IP. [/mm] Wie groß ist [mm] \varphi(n)? [/mm]

Interessanter ist die Frage nach [mm] \varphi(n)=\bruch{n}{4}. [/mm] Das kann man ziemlich genau bestimmen. ;-)

Grüße
reverend

Bezug
                        
Bezug
Phi(n)< n/4: Antwort
Status: (Antwort) fertig Status 
Datum: 06:39 Mi 04.06.2014
Autor: UniversellesObjekt

Wenn es um $<$ geht, hat meine Antwort doch gepasst. [mm] $\varphi [/mm] $ nimmt kleine Werte an, wenn das Argument möglichst wenig Primfaktoren in hohen Potenzen hat. Es gilt [mm] $\varphi6/6=1/3$; [/mm] aber welches ist die nächste Zahl, auf die man so stößt?

Liebe Grüße,
UniversellesObjekt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]