matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKünstliche Intelligenz und RobotikPerzeptron Trainingsdaten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Künstliche Intelligenz und Robotik" - Perzeptron Trainingsdaten
Perzeptron Trainingsdaten < Künstl. Intelligenz < Praktische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Künstliche Intelligenz und Robotik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Perzeptron Trainingsdaten: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:30 Mi 29.02.2012
Autor: Pille456

Hi!

Ich habe eine Frage zum Perzeptron und linear seperablen Mengen:

Zur Wiederholung: Ein Perzeptron "feuert" genau dann, wenn (für den 2 dimensionalen Fall) [mm] w_1*x_1+w_2*x_2 \ge \Theta [/mm] gilt.
Nun gibt es ja verschiedene Lernalgorithmen für Perzeptrons. Häufig wird dabei der Trick verwandt, dass negative Beispiel in positive Beispiele verkehrt werden, indem man die negativen Beispiele invertiert. Rein formelmäßig macht das auch Sinn, denn durch das Invertieren dreht sich dann irgendwann das [mm] \ge [/mm] in ein < usw.
Jedoch kann ich das grafisch irgendwie nicht direkt "fassen". Hierzu mal ein Beispiel:

Die XOR-Funktion kann ja nicht von einem Perzeptron entschieden werden, da die Menge nicht linear seperable ist: (P = positive Beispiele, N = negative Beispiele)
[mm] P=\{(0,1), (1,0) \} [/mm] und [mm] N=\{(0,0),(1,1)\} \Rightarrow P'=\{(0,0),(1,0),(0,1),(1,1)\}=P \cup [/mm] -N

Erstmal ist die Menge P' jetzt linear seperable, was ja nicht Sinn der Sache ist! Der Algorithmus den ich zum Erkennen einer linear seperablen Menge kenne, schließt nun konsequenterweise die triviale Lösung [mm] (\Theta [/mm] = 0) aus. (Das macht dann formelmäßig wieder Sinn) Dennoch ist die Menge ja weiterhin linear seperable, was ja nicht Sinn der Sache ist, oder?

Was übersehe ich gerade?

Gruß

Pille

        
Bezug
Perzeptron Trainingsdaten: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Fr 02.03.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Künstliche Intelligenz und Robotik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]