matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbbildungen und MatrizenPermutationsmatrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Abbildungen und Matrizen" - Permutationsmatrix
Permutationsmatrix < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutationsmatrix: Inverse, Transponierte
Status: (Frage) beantwortet Status 
Datum: 21:20 Di 13.01.2009
Autor: Pacapear

Hallo zusammen.

Ich habe eine kurze Frage:

Kann es sein, dass bei einer Permutationsmatrix die Inverse und die Transponierte und auch die Permutationsmatrix selbst immer die gleiche Matrix sind?

Hier mal ein selbst ausgedachtes Beispiel:

[mm] P=\pmat{ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 } [/mm]

[mm] P^{-1}=\pmat{ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 } [/mm]

[mm] P^T=\pmat{ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 } [/mm]

Also [mm] P=P^{-1}=P^T. [/mm]

Gilt das immer?

LG, Nadine

        
Bezug
Permutationsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 21:40 Di 13.01.2009
Autor: MathePower

Hallo Pacapear,

> Hallo zusammen.
>  
> Ich habe eine kurze Frage:
>  
> Kann es sein, dass bei einer Permutationsmatrix die Inverse
> und die Transponierte und auch die Permutationsmatrix
> selbst immer die gleiche Matrix sind?
>  
> Hier mal ein selbst ausgedachtes Beispiel:
>  
> [mm]P=\pmat{ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 }[/mm]
>  
> [mm]P^{-1}=\pmat{ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 }[/mm]
>  
> [mm]P^T=\pmat{ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 }[/mm]
>  
> Also [mm]P=P^{-1}=P^T.[/mm]
>  
> Gilt das immer?

Ja.

Die Matrix P ist ja orthogonal,
darüber hinaus haben ihre Spaltenvektoren den Betrag 1, d.h. es gilt

[mm]P*P^{T}=P^{T}*P=\pmat{1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 &1}[/mm]

Da dies aber auch die Bedingung für die Inverse ist, folgt [mm]P^{-1}=P^{T}[/mm]

Wenn man zwei Spalten i und j vertauscht,
so steht an der Stelle [mm] p_{ij} [/mm] und [mm] p_{ji} [/mm] eine 1,
was dann auch für die Transponierte gilt.

Demnach ist [mm]P=P^{T}[/mm]

Daher gilt: [mm]P=P^{T}=P^{-1}[/mm]


>  
> LG, Nadine


Gruß
MathePower

Bezug
                
Bezug
Permutationsmatrix: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:56 Mi 14.01.2009
Autor: Pacapear

Hallo MathePower,

vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]