Permutationsgruppe S5 < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:40 So 07.11.2010 | Autor: | Talianna |
Aufgabe | Es sei [mm] $S_5$ [/mm] die Gruppe aller Permutationen der Zahlen 1,...,5. Enthält [mm] $S_5$ [/mm] eine Untergruppe der Ordnung 15? |
Hallo, ich habe mal wieder eine Frage zu Gruppen.
Ich habe die Suchfunktion benutzt und diesen Thread gefunden:
Untergruppe der Ordnung 15
Leider hilft der mir nicht so wirklich weiter.
Auf die Ordnung von [mm] $S_5$ [/mm] war ich auch schon gekommen, die ist ja 120. Nach dem Satz von Lagrange wären also Untergruppen, die in Frage kämen, Gruppen mit den folgenden Ordnungen:
1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60 und 120.
Da ist ja die 15 nun dabei. Mein Problem besteht darin, wie ich denn nun Beweisen kann, dass es keine Untergruppe der Ordnung 15 gibt.
Wenn ich den Hinweis im anderen Thread befolge und einfach einen 3-Zykel mit nem 2-Zykel verknüpfe, dann komm ich trotzdem nur auf 5. Und für Ordnung 15 bringt mich das auch irgendwie nicht weiter, weil das ja nicht sagt, dass es nicht auch was größeres geben kann. Dafür müsst ich ja alle Möglichkeiten aufstellen und das is doch sicher nicht Sinn der Sache...
Hat jemand ne Idee und kann mir helfen?
Vielen Dank schonmal,
Grüße
|
|
|
|
Hallo
> Auf die Ordnung von [mm]S_5[/mm] war ich auch schon gekommen, die
> ist ja 120. Nach dem Satz von Lagrange wären also
> Untergruppen, die in Frage kämen, Gruppen mit den
> folgenden Ordnungen:
> 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60 und
> 120.
>
> Da ist ja die 15 nun dabei. Mein Problem besteht darin, wie
> ich denn nun Beweisen kann, dass es keine Untergruppe der
> Ordnung 15 gibt.
Nehme also an, es gäbe eine Untergruppe der Ordnung 15. Wieder nach dem Satz von Lagrange teilt die Ordnung jedes Elements der Untergruppe die Gruppenordnung. In diesem Fall kommen also nur Elemente der Ordnung 1, 3, 5, 15 in Frage.
Element der Ordnung 1 gibt es offensichtlich nur eins. Elemente der Ordnung 15 kann es nach dem Thread den du genannt hast nicht geben.
Also kommen nur noch Elemente der Ordnung 3 und 5 in Frage. Wieviele solche Elemente gibt es in [mm] $S_{5}$? [/mm] Und wieviele müssen in einer Untergruppe mindestens vorkommen? (oder anders, mit welcher minimalen Anzahl an Kombinationen von 3er und 5er Zykel erhälst du eine Untergruppe?)
> Vielen Dank schonmal,
> Grüße
Grüsse, Amaro
|
|
|
|
|
Also wenn ich es richtig verstanden habe, dann gibt es in [mm] $S_5$ [/mm] 2 mal 3-er Zykel, nämlich:
(1,2,3) und (1,3,2) [denn z.b. (3,2,1) wäre ja wieder das gleiche)]
und 15 mal 5-er Zykel [wobei ich da nicht weiß, ob ich welche vergessen habe].
edit: hab mich vertan, es müssten 19 2er Zykel und 17 5-er Zykel sein. (Habe für die 3er zykel 4 und 5 vergessen, also z.B. sowas wie 345) Vorausgesetzt ich hab das richtig verstanden...
Leider weiß ich nicht, wie man bestimmt, wieviele man mindestens braucht um eine Untergruppe zu erzeugen. Kannst du mir da noch einen Hinweis geben?
Danke schonmal!
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:20 Di 09.11.2010 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|