matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraPermutation u. kgV Zyklenlänge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Algebra" - Permutation u. kgV Zyklenlänge
Permutation u. kgV Zyklenlänge < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutation u. kgV Zyklenlänge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:45 Mi 05.11.2008
Autor: damien23

Aufgabe
Die Ordnung einer Permutation [mm] \pi \varepsilon S_{n} [/mm] ist gleich dem kgV ihrer Zyklenlänge.

Hey,
die Herleitung dieses Satzen macht mir Probleme. In der Vorlesung
wurde er nur mit der beliebten Formulierung "...wie Sie leicht sehen, gilt diesere Satz...; der Beweis ist trivial" abgehandelt. Habe nun versucht ihn selbst zu beweisen komme aber nicht weiter.

Hier mein Ansatz:
Jede Permutation kann man ja als Produkt von Zyklen schreiben.

Nun stellt sich die Frage nach der Ordnung der einzelnen Zyklen
=> Ord (Zyklus der Länge k) = k

Seien x,y,z Zykel einer Permutation, mit [mm] x^{k}=y^{m}=z^{i}=id=(1) [/mm]

=> [mm] \pi= [/mm] x [mm] \circ [/mm] y [mm] \circ [/mm] z

Wie kann ich nun auf die Ordnung von Pi schließen?

In meinen Algebra-Büchern (v.d.waerden u. Basch) wird der Satz ebenfalls nicht gezeigt. Sofern jemand weiß, wo man ihn im Netz findet würde das auch reichen.

Mfg
Damien

        
Bezug
Permutation u. kgV Zyklenlänge: Antwort
Status: (Antwort) fertig Status 
Datum: 12:59 Mi 05.11.2008
Autor: felixf

Hallo

> Die Ordnung einer Permutation [mm]\pi \varepsilon S_{n}[/mm] ist
> gleich dem kgV ihrer Zyklenlänge.
>
>  Hey,
>  die Herleitung dieses Satzen macht mir Probleme. In der
> Vorlesung
> wurde er nur mit der beliebten Formulierung "...wie Sie
> leicht sehen, gilt diesere Satz...; der Beweis ist trivial"
> abgehandelt. Habe nun versucht ihn selbst zu beweisen komme
> aber nicht weiter.
>  
> Hier mein Ansatz:
>  Jede Permutation kann man ja als Produkt von Zyklen
> schreiben.

Du hast das allerwichtigste vergessen: die Zyklen muessen disjunkt sein!

> Nun stellt sich die Frage nach der Ordnung der einzelnen
> Zyklen
>  => Ord (Zyklus der Länge k) = k

>  
> Seien x,y,z Zykel einer Permutation, mit
> [mm]x^{k}=y^{m}=z^{i}=id=(1)[/mm]
>
> => [mm]\pi=[/mm] x [mm]\circ[/mm] y [mm]\circ[/mm] z
>  
> Wie kann ich nun auf die Ordnung von Pi schließen?

Zeige, dass zwei Zykel kommutieren, falls sie disjunkt sind.

Daraus folgere dann [mm] $\pi^k [/mm] = [mm] x^k \circ y^k \circ z^k$ [/mm] fuer alle $k [mm] \in \IN$, [/mm] und folgere [mm] $\pi^k [/mm] = id$ genau dann, wenn $x^ k =id$, [mm] $y^k [/mm] = id$ und [mm] $z^k [/mm] = id$.

> In meinen Algebra-Büchern (v.d.waerden u. Basch) wird der
> Satz ebenfalls nicht gezeigt. Sofern jemand weiß, wo man
> ihn im Netz findet würde das auch reichen.

Hier im Forum kam er sicher schon mehrmals; an mind. eine Diskussion kann ich mich erinnern.

LG Felix


Bezug
                
Bezug
Permutation u. kgV Zyklenlänge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:01 Mi 05.11.2008
Autor: damien23

danke für die schnelle antwort, versuche mal es auszuformulieren und melde mich dann nochmal

mfg
damien

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]