matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenPermutation signum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - Permutation signum
Permutation signum < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutation signum: Hilfe zu Aufgabe1
Status: (Frage) beantwortet Status 
Datum: 20:21 Do 11.09.2014
Autor: soulflow

Aufgabe
Die Ordnung einer zyklischen Permutation [mm]\varphi = (a_1 ... a_k)[/mm] ist k. Seien [mm] \sigma_1, ..., \sigma_b \in S_n ( n \ge 2, b \ge 1)[/mm] zyklische Permutationen mit den Ordnungen [mm] k_1, ..., k_b[/mm] und sei [mm] \sigma = \sigma_1 \circ ... \circ \sigma_b [/mm].

Leite eine Formel her, die sign([mm]\sigma[/mm]) mit Hilfe der Ordnungen [mm] k_1, ..., k_b[/mm] ausdrückt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

sitze an dieser Aufgabe nun seit Stunden und weis echt nicht mehr weiter.  Mein Ansatz war, dass eine Permutation [mm]\sigma[/mm] der Ordnung b  in b-1 Transpositionen zerlegt werden kann. Also in die Form:

[mm]\sigma_b = (i_1 i_2) \circ ... \circ (i_{b-1} i_b)[/mm]
Für eine Transposition [mm] (i_1 i_2)[/mm] ist sign( [mm] (i_1 i_2)[/mm] ) = -1
Also für eine Permutation [mm]\sigma_b[/mm] der Ordnung b ist
sign([mm] \sigma_b [/mm]) = [mm](-1)^{b-1}[/mm]

Aber wie soll ich von hier aus weiter machen? Ich weiß ja nicht wie viel Permutationen [mm]\sigma[/mm] aus [mm]S_n[/mm] verkettet werden und welche Ordnungen diese im Einzelnen haben.  Hoffe mir kann jemand helfen, ohne gleich die Lösung zu verraten.

Vielen Dank im Vorraus.



        
Bezug
Permutation signum: Antwort
Status: (Antwort) fertig Status 
Datum: 22:26 Do 11.09.2014
Autor: hippias


> Die Ordnung einer zyklischen Permutation [mm]\varphi = (a_1 ... a_k)[/mm]
> ist k. Seien [mm]\sigma_1, ..., \sigma_b \in S_n ( n \ge 2, b \ge 1)[/mm]
> zyklische Permutationen mit den Ordnungen [mm]k_1, ..., k_b[/mm] und
> sei [mm]\sigma = \sigma_1 \circ ... \circ \sigma_b [/mm].
>  
> Leite eine Formel her, die sign([mm]\sigma[/mm]) mit Hilfe der
> Ordnungen [mm]k_1, ..., k_b[/mm] ausdrückt.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo,
>
> sitze an dieser Aufgabe nun seit Stunden und weis echt
> nicht mehr weiter.  Mein Ansatz war, dass eine Permutation
> [mm]\sigma[/mm] der Ordnung b  in b-1 Transpositionen zerlegt werden
> kann. Also in die Form:
>  
> [mm]\sigma_b = (i_1 i_2) \circ ... \circ (i_{b-1} i_b)[/mm]
>  Für
> eine Transposition [mm](i_1 i_2)[/mm] ist sign( [mm](i_1 i_2)[/mm] ) = -1
>  Also für eine Permutation [mm]\sigma_b[/mm] der Ordnung b ist
> sign([mm] \sigma_b [/mm]) = [mm](-1)^{b-1}[/mm]
>  
> Aber wie soll ich von hier aus weiter machen? Ich weiß ja
> nicht wie viel Permutationen [mm]\sigma[/mm] aus [mm]S_n[/mm] verkettet
> werden und welche Ordnungen diese im Einzelnen haben.  

Na eben doch: es sind $b$ Permutationen, die verkettet werden und die $i$-te hat die Ordnung [mm] $k_{i}$. [/mm] Also kannst Du auf jeden Faktor Deine obige richtige Ueberlegung anwenden. Beachte fuer das Signum von [mm] $\sigma$, [/mm] dass die Signumfunktion ein Homomorphismus ist.

> Hoffe mir kann jemand helfen, ohne gleich die Lösung zu
> verraten.
>  
> Vielen Dank im Vorraus.
>
>  


Bezug
                
Bezug
Permutation signum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:45 Fr 12.09.2014
Autor: soulflow

Vielen Dank für deine Antwort. Das die Signumfunktion ein Homomorphismus, habe ich völlig außer acht gelassen.
Davon ausgehend wäre sign([mm]\sigma [/mm]) = sign([mm] \sigma_1[/mm])* ...* sign([mm]\sigma_b[/mm])
Also : sign([mm]\sigma [/mm]) = [mm](-1)^{k_1 -1} * ... * (-1)^{k_b -1}[/mm]
Daraus folgt :sign([mm] \sigma[/mm]) [mm]= [/mm][mm] \produkt_{i=1}^{b} (-1)^{k_i -1}[/mm]

Stimmt das so ?

Bezug
                        
Bezug
Permutation signum: Antwort
Status: (Antwort) fertig Status 
Datum: 08:12 Fr 12.09.2014
Autor: hippias

Sieht gut aus. Man koennte noch genauer untersuchen, wann das Signum $=1$ ist: [mm] $sgn(\sigma)=1\iff$ [/mm] $b$ und [mm] $k_{i}$ $\ldots$. [/mm]

Bezug
                                
Bezug
Permutation signum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:35 Fr 12.09.2014
Autor: soulflow

Vielen Dank für dein Hilfe! Ich habe eine weitere Aufgabe bei der ich nicht weiß, wie Anfangen soll. Kann ich die hier schreiben oder soll ich eine neue Diskussion öffnen?

Bezug
                                        
Bezug
Permutation signum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:59 Fr 12.09.2014
Autor: Valerie20


> Vielen Dank für dein Hilfe! Ich habe eine weitere Aufgabe
> bei der ich nicht weiß, wie Anfangen soll. Kann ich die
> hier schreiben oder soll ich eine neue Diskussion öffnen?

Beginne einen neuen Strang für die neue Aufgabe. Ansonten wird das unübersichtlich.

Valerie

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]