matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenPermutation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Determinanten" - Permutation
Permutation < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:15 Sa 21.04.2012
Autor: meep

Aufgabe
Stellen Sie die folgenden Permutationen als Produkt von Transpositionen dar und geben Sie das Signum der Permutationen an.

a)

[mm] \sigma_1 [/mm] := [mm] \pmat{ 1 & 2 & 3 & 4 & 5 & 6\\ 3 & 5 & 2 & 6 & 4 & 1 } [/mm]

b)

[mm] \sigma_2 [/mm] := [mm] \pmat{ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 7 & 4 & 5 & 3 & 6 & 8 & 2 } [/mm]

hallo zusammen,

also ich hab das mal wie folgt gelöst:

zu a)

[mm] \sigma_1 [/mm] := [mm] \pmat{ 1 & 2 & 3 & 4 & 5 & 6\\ 3 & 5 & 2 & 6 & 4 & 1 } [/mm] = (1,3,2,5,4,6) = (1,6)(1,4)(1,5)(1,2)(1,3)

zu b)

[mm] \sigma_2 [/mm] := [mm] \pmat{ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 7 & 4 & 5 & 3 & 6 & 8 & 2 } [/mm] = (1)(2,7,8)(3,4,5) (6) = (1)(2,8)(2,7)(3,5)(3,4)(6)

erstmal die frage ist das richtig ? und falls ja wie bestimme ich nun das Signum, habs auf wikipedia leider nicht wirklich verstanden.

liebe grüße

meep

        
Bezug
Permutation: Antwort
Status: (Antwort) fertig Status 
Datum: 19:30 Sa 21.04.2012
Autor: Schadowmaster

moin meep,

Die Zerlegungen sehen gut aus.
Wenn du das selbst überprüfen möchtest dann setze doch einfach mal die Zahlen $1$ bis $8$ ein und guck, was deine Transpositionen damit machen.
Wenn sie das gleiche machen wie die Ausgangspermutationen bist du fertig, denn zwei Abbildungen sind nach Definition genau dann gleich, wenn sie für alle Elemente aus dem Definitionsbereich den gleichen Wert ergeben.
Für das Signum musst du nun, wo du die Zerlegung bereits hast, einfach die Anzahl der Transpositionen zählen. Ist $k$ diese Anzahl, so ist [mm] $(-1)^k$ [/mm] das Signum.
Dass du damit das Signum erhälst  und dass es überhaupt wohldefiniert ist (d.h. egal wie du die Permutation zerlegst, die Anzahl der Transpositionen ist immer gerade oder ungerade - diese Anzahl ist nämlich nicht eindeutig!) das sollte dein Prof entweder schon gezeigt haben oder noch zeigen, du wirst es zumindest sicher irgendwo in deinem Skript finden.


lg

Schadow

Bezug
                
Bezug
Permutation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:39 Sa 21.04.2012
Autor: meep

Vielen lieben dank Schadow, das hat mir geholfen :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]