matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesPermutation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Permutation
Permutation < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:58 Mo 01.12.2008
Autor: Fuchsschwanz

Hallo!


Unser Prof hat die det A= [mm] \pmat{ a & b \\ c & d } [/mm] hergeleitet.  Dafür hat er folgendes genutzt: [mm] S_2={id, tau} [/mm] tau(1)=2 und tau(2)=1 und dann weiter mit fehlstellungen argumentiert: f(id)=0 sgn(id)=1
f(tau)=1 sgn(tau)=-1. Mir ist das völlig unklar...vllt. kann mir jemand den Beweis und Permutationen an sich erklären?
wäre lieb danke

        
Bezug
Permutation: Antwort
Status: (Antwort) fertig Status 
Datum: 15:39 Mo 01.12.2008
Autor: Leopold_Gast

Betrachte zum Beispiel die Permutation

[mm]\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 7 & 1 & 4 & 6 & 8 & 5 \end{pmatrix} \in S_8[/mm]

In der oberen Zeile stehen die Urbilder, darunter die zugehörigen Bilder (das ist also sozusagen eine Wertetabelle der Abbildung). Jetzt gehst du unten alle Paare durch, und immer wenn die linke Zahl größer als die rechte ist, liegt ein Fehlstand vor:

32 Fehlstand, 37 Normalstand, 31 Fehlstand, 34 Normalstand, 36 Normalstand, 38 Normalstand, 35 Normalstand, 27 Normalstand, 21 Fehlstand, ... , 85 Fehlstand

Wenn ich mich nicht verzählt habe, sind es insgesamt 9 Fehlstände. Da die Zahl der Fehlstände ungerade ist, ist [mm]\operatorname{sgn}(\pi) = -1[/mm].

Für die Determinante der 8-reihigen Matrix [mm]A = (a_{ij})[/mm] heißt das, daß der zugehörige Summand negatives Vorzeichen bekommt:

[mm]\det(A) = \ldots + (-1) \cdot a_{13}a_{22}a_{37}a_{41}a_{54}a_{66}a_{78}a_{85} + \ldots[/mm]

Bezug
                
Bezug
Permutation: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:43 Mo 01.12.2008
Autor: Fuchsschwanz

Supi! vielen liben dank, es ist manchmal etwas schwierig sich aus den aufgeschriebenen Bruchstücken etwas zusammenzureimen ;-)

hab dann auch gleich noch eine Frage,
es geht um die obere Dreiecksmatrix, dort haben wir aufgeschrieben, dass die ein Summand der Determinante ungleich null ist, solange [mm] i<\delta [/mm] (i) ist, wobei für die determinante gilt:

[mm] det(A)=Summe(sgn(\delta)a_1_\delta(1)..... [/mm]

Daraus soll dann folgen: aus [mm] n<=\delta(n)<=n [/mm] folgt delta(n)=n sowie aus [mm] (n-1)<=\delta(n-1)<=(n-1). [/mm] Dann gilt [mm] \delta [/mm] =id und damit hat er dann gezeigt, dass die Determinante der oberen Dreieckmatrix die Hauptdiagonale ist. Kann mir das jemand erklären?

Bezug
                        
Bezug
Permutation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:02 Di 02.12.2008
Autor: Fuchsschwanz

vielleicht mag mir jemand einfach eine andere Definition sagen, wann der Summand nicht null ist?

Bezug
                                
Bezug
Permutation: Antwort
Status: (Antwort) fertig Status 
Datum: 07:12 Di 02.12.2008
Autor: Leopold_Gast

Mache es dir anschaulich klar. Nehmen wir denselben Summanden wie oben, wobei jetzt zusätzlich [mm]A[/mm] eine obere Dreiecksmatrix sein soll. Dann sind ja alle Elemente [mm]a_{ij}[/mm] der Matrix, bei denen [mm]i>j[/mm] ist, gleich 0. Für den Summanden heißt das

[mm]a_{13} a_{22} a_{37} a_{41} a_{54} a_{66} a_{78} a_{85} = a_{13} \cdot a_{22} \cdot a_{37} \cdot 0 \cdot 0 \cdot a_{66} \cdot a_{78} \cdot 0 = 0[/mm]

Und da ein Produkt 0 wird, wenn mindestens ein Faktor 0 wird, mußt du dir nur überlegen, daß in jedem Summanden außer dem, der das Produkt der Hauptdiagonalen darstellt, so ein Faktor 0 vorkommt.

Bezug
                        
Bezug
Permutation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mi 03.12.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]