matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenPermutation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Permutation
Permutation < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:09 Mi 19.12.2007
Autor: Mirage.Mirror

Aufgabe
Sei [mm] \alpha \in S_{n} [/mm] eine Permutation und sei [mm] P_{\alpha} \in K^{n x n} [/mm] die Matrix mit den Einträgen

[mm] (P_{\alpha} )_{ij} [/mm] :=  
1 falls i [mm] =\alpha [/mm] (j)
0 falls i [mm] \not= \alpha [/mm] (j)


(a) Zeigen Sie, dass [mm] f_{P_{\alpha}} (e_{i}) [/mm] = [mm] e_{\alpha(i)} [/mm] für alle i = 1,...  n.

(b) Zeigen Sie, dass [mm] \mathcal{P} [/mm] := { [mm] P_{\alpha} [/mm] | [mm] \alpha \in S_{n} [/mm] }eine Untergruppe von [mm] GL_{n}(K) [/mm] ist.

(a)
Ist ersteinmal e ein beliebiges Element? Und bedeutet das hier, dass man durch anwenden einer Funktion, die die [mm] P_{\alpha} [/mm] bewirkt dann das Element bekommt, auf das man die Permutation an der Stelle i anwendet? Und wenn ja, wieso gilt dies dann? Es wäre mir erst einmal wichtig zu verstehen, was genau zu zeigen ist, bevor ich das dann zeigen kann .

(b)
Untergruppen verstehe ich noch immer nicht richtig, wann ist es denn eine Untergruppe und speziell hier eine Untergruppe der invertierbaren Matritzen?


Hilfe und Tipps nehme ich gerne entgegen, Danke schon einmal für das Bemühen.

        
Bezug
Permutation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:46 Mi 19.12.2007
Autor: Mirage.Mirror

Falls noch jemand einen Hinweis hat wäre ich sehr erleichtert.

Bezug
        
Bezug
Permutation: Antwort
Status: (Antwort) fertig Status 
Datum: 01:34 Do 20.12.2007
Autor: Zneques

Hallo,

[mm] e_i [/mm] sind die Vektoren der Standardbasis. D.h. [mm] e_1=\vektor{1 \\ 0\\ 0\\ ...}, e_2=\vektor{0 \\ 1\\ 0\\ ...}, e_1=\vektor{0 \\ 0\\ 1\\ ...}, [/mm] ...
Du musst also zeigen, dass die 1 von der i-ten Stelle an die [mm] \alpha(i) [/mm] -te getauscht wird.
Untergruppe heißt nur, dass es eine Teilmenge ist
(hier [mm] \mathcal{P}\subseteq GL_{n}(K) [/mm] also für alle [mm] P_{\alpha}\in\mathcal{P} [/mm] gilt [mm] P_{\alpha}\in GL_{n}(K) [/mm] )
und trotzdem alle Gruppeneigenschaften gelten (Inverse, Abgeschlossenheit,...).

Ciao.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]