matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisPeriodische Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Periodische Funktionen
Periodische Funktionen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Periodische Funktionen: Hilfestellung erbeten...
Status: (Frage) beantwortet Status 
Datum: 16:57 Mi 14.06.2006
Autor: DeutschlandvorschiessteinTor

Aufgabe
Eine Funktion [mm] f: \IC \to \IC [/mm] heißt doppelt periodisch, falls es 2 [mm] \IR [/mm] - lineare unabhängige Vektoren [mm] w_1,w_2 \in \IC [/mm] gibt, so dass [mm] f(z)=f(z+w_1)=f(z+w_2) [/mm] für alle [mm] z \in \IC [/mm].

Klassifiziere alle holomorphen doppelt periodischen Funktionen [mm] \IC \to \IC [/mm]

Hi Ihr,

stehen bei der Aufgabe etwas auf dem Schlauch. Vielleicht kann irgendjemand einen Ansatz liefern.

Wäre super!

Tausend Dank und liebe Grüße

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Periodische Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 Mi 14.06.2006
Autor: AT-Colt

Hallo Du,

holomorph auf ganz [mm] \IC [/mm] bedeutet ja, dass die Funktion ganz ist. Habt ihr da schon Sätze drüber? Identitätssatz \ Folgerungen aus Beschränktheit und so?

Wenn [mm] $w_{1}, w_{2} \in \IC$ [/mm] linear unabhängig sind, spannen sie ganz [mm] \IC [/mm] auf, also gibt es quasi zwei Geraden, auf denen die Funktion jeweils [mm] $w_{i}$-periodisch [/mm] sind.

Jetzt überleg Dir mal, ob in so einer Raute [mm] $M:=\{z \in \IC | z = z_{0}+\lambda_{1}w_{1}+\lambda_{2}w_{2}, \lambda_{i} \in [0,1]\}$ [/mm] alle Werte von [mm] \IC [/mm] angenommen werden können, oder ob es mehr als einen Wert geben könnte, der nicht angenommen wird.

Ich hoffe, das hilft Dir erstmal etwas weiter.

greetz

AT-Colt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]