matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisPeriodische Eig. von Fkt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Periodische Eig. von Fkt.
Periodische Eig. von Fkt. < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Periodische Eig. von Fkt.: Idee
Status: (Frage) beantwortet Status 
Datum: 19:19 Mo 21.05.2012
Autor: Lonpos

Aufgabe
sinus und cosinus sind ja [mm] 2\pi-periodische [/mm] Funktionen und ihre Ableitungen sind ganze Funktionen, ich suche nun Fkt. mit folgenden Eigenschaften

(i) f(z+1)=f(z) [mm] \forall{z}\in\IC [/mm] und f' ist ganze Funktion
(ii) f(z+i)=f(z) [mm] \forall{z}\in\IC [/mm] und f' ist ganze Funktion

Wie gehe ich bei so einem Beispiel allgemein vor? Meiner Meinung nach sollte es irgendetwas mit der e Funktion zu tun haben. Vielleicht habt ihr einen Vorschlag.


        
Bezug
Periodische Eig. von Fkt.: Periode von exp
Status: (Antwort) fertig Status 
Datum: 19:49 Mo 21.05.2012
Autor: Helbig

Die Exponentialfunktion hat eine Periode von [mm] $2\pi [/mm] i$.
Dies kannst Du ausnutzen, um eine Funktion mit der Periode $1$ bzw. $i$ zu bauen.

Gruß,
Wolfgang

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]