matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheoriePeriodic continued fraction
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - Periodic continued fraction
Periodic continued fraction < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Periodic continued fraction: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:50 Do 15.04.2010
Autor: Arcesius

Aufgabe
Let [mm] \xi \in \IR [/mm] be an irrational number with a periodic continued fraction expansion. Show that [mm] \xi [/mm] is quadratic, i.e. is of the form [mm] a+b\sqrt{d} [/mm] for some a,b,c [mm] \in \IQ [/mm]

Hallo Zusammen

In der Vorlesung haben wir die andere Richtung gezeigt, welche ja eigentlich schwieriger ist. Diese Richtung sollte relativ "straightforward" gehen.. doch ich komme nicht drauf :)

Ich schreibe zuerst:
[mm] \xi [/mm] = [mm] [a_{0};a_{1},...,a_{n},\overline{a_{n+1},...,a_{m}}] [/mm] = [mm] [a_{0};a_{1},...,a_{n},\alpha] [/mm]    mit [mm] \alpha [/mm] = [mm] [a_{n+1},...,a_{m},\alpha] [/mm]

Ich nehme an, [mm] \xi [/mm] hat eine periodische Kettenbruchentwicklung. Mit dem obigen [mm] \alpha [/mm] kann ich schreiben:

[mm] \xi [/mm] = [mm] a_{0}+\frac{1}{a_{1}+\frac{1}{\vdots a_{n}+\frac{1}{\alpha}}} [/mm]


Wenn ich jetzt zuerst [mm] \alpha [/mm] betrachte, kriege ich:

[mm] \alpha [/mm] = [mm] [a_{n+1},...,a_{m},\alpha] [/mm] = [mm] \frac{\alpha p_{n} + p_{n-1}}{\alpha q_{n} + q_{n-1}} [/mm]   wobei hier [mm] \frac{p_{n}}{q_{n}} [/mm] die n'te Konvergenz ist.  

Jetzt kann ich [mm] \xi [/mm] umschreiben als:

[mm] \xi [/mm] = [mm] a_{0}+\frac{1}{a_{1}+\frac{1}{\vdots a_{n}+\frac{\alpha q_{n} + q_{n-1}}{\alpha p_{n} + p_{n-1}}}} [/mm]


Wie soll ich hier weitermachen?

Ich bin um jede Hilfe dankbar :)


Grüsse, Amaro

        
Bezug
Periodic continued fraction: Antwort
Status: (Antwort) fertig Status 
Datum: 22:43 Do 15.04.2010
Autor: felixf

Moin Amaro!

> Let [mm]\xi \in \IR[/mm] be an irrational number with a periodic
> continued fraction expansion. Show that [mm]\xi[/mm] is quadratic,
> i.e. is of the form [mm]a+b\sqrt{d}[/mm] for some a,b,c [mm]\in \IQ[/mm]
>  
> Hallo Zusammen
>  
> In der Vorlesung haben wir die andere Richtung gezeigt,
> welche ja eigentlich schwieriger ist. Diese Richtung sollte
> relativ "straightforward" gehen.. doch ich komme nicht
> drauf :)
>  
> Ich schreibe zuerst:
>  [mm]\xi[/mm] = [mm][a_{0};a_{1},...,a_{n},\overline{a_{n+1},...,a_{m}}][/mm]
> = [mm][a_{0};a_{1},...,a_{n},\alpha][/mm]    mit [mm]\alpha[/mm] =
> [mm][a_{n+1},...,a_{m},\alpha][/mm]
>  
> Ich nehme an, [mm]\xi[/mm] hat eine periodische
> Kettenbruchentwicklung. Mit dem obigen [mm]\alpha[/mm] kann ich
> schreiben:
>  
> [mm]\xi[/mm] = [mm]a_{0}+\frac{1}{a_{1}+\frac{1}{\vdots a_{n}+\frac{1}{\alpha}}}[/mm]
>  
>
> Wenn ich jetzt zuerst [mm]\alpha[/mm] betrachte, kriege ich:
>  
> [mm]\alpha[/mm] = [mm][a_{n+1},...,a_{m},\alpha][/mm] = [mm]\frac{\alpha p_{n} + p_{n-1}}{\alpha q_{n} + q_{n-1}}[/mm]
>   wobei hier [mm]\frac{p_{n}}{q_{n}}[/mm] die n'te Konvergenz ist.  

Wenn du jetzt das ganze mit [mm] $\alpha q_n [/mm] + [mm] q_{n-1}$ [/mm] multiplizierst, bekommst du (nach etwas umformen) eine quadratische Gleichung, deren eine Loesung [mm] $\alpha$ [/mm] ist. Daraus folgt, dass [mm] $\alpha$ [/mm] von der gesuchten Form ist.

> Jetzt kann ich [mm]\xi[/mm] umschreiben als:
>  
> [mm]\xi[/mm] = [mm]a_{0}+\frac{1}{a_{1}+\frac{1}{\vdots a_{n}+\frac{\alpha q_{n} + q_{n-1}}{\alpha p_{n} + p_{n-1}}}}[/mm]

Also ist [mm] $\xi$ [/mm] ein rationaler Ausdruck in [mm] $\alpha$. [/mm] Wenn also [mm] $\alpha$ [/mm] im Koerper [mm] $\IQ(\sqrt{d}) [/mm] = [mm] \{ a + b \sqrt{d} \mid a, b \in \IQ \}$ [/mm] liegt, dann ebenso [mm] $\xi$. [/mm]

LG Felix


Bezug
                
Bezug
Periodic continued fraction: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:01 Fr 16.04.2010
Autor: Arcesius

Hallo Felix

Na, das ist also schon fertig? Na gut.. dann bin ich froh :)

Vielen Dank (einmal wieder) für deine Hilfe!

Grüsse, Amaro

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]