matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheoriePartielle Integration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integrationstheorie" - Partielle Integration
Partielle Integration < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:17 So 24.06.2012
Autor: SamuraiApocalypse

Aufgabe
Die Frage ist während dem Lösen einer Physikaufgabe aufgetaucht. Es handelt sich um das Integral:

[mm] $\integral_{0}^{\pi}{sin^2(nz) sin(z)dz}$ [/mm]

Mit partiellem Integrieren und Additiontheoremen kann ich es wie folgt vereinfachen. Leider komme ich aber nicht mehr weiter

[mm]\integral_{0}^{\pi}{sin^2(nz) sin(z)dz} = -sin^2(nz)cos(z) |^\pi_0 + \integral_{0}^{\pi}{2nsin(nz)cos(nz) cos(z)dz} = \underbrace{-sin^2(nz)cos(z) |^\pi_0 }_{=0} + n \integral_{0}^{\pi}{sin(2nz) cos(z)dz} = \underbrace{-nsin(2nz)sin(z) |^\pi_0 }_{=0} - 2n^2 \integral_{0}^{\pi}{cos(2nz) sin(z)dz} = ...[/mm]

und nun sehe ich nicht mehr wie ich es weiter vereinfachen könnte und fange an mich im Kreis zu drehen.

Vielen Dank für einen Input

cheers

Apocalypse

        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 14:48 So 24.06.2012
Autor: reverend

Hallo SamuraiApocalypse,

> und nun sehe ich nicht mehr wie ich es weiter vereinfachen
> könnte und fange an mich im Kreis zu drehen.

Wer sich beim partiellen Integrieren "im Kreis dreht", ist meistens auf einem guten Weg. Geh ihn noch ein bisschen weiter...

Die Lösung des bestimmten Integrals gibt mir []WolframAlpha als [mm] \bruch{8n^2+\cos{(2\pi n)-1}}{8n^2-2} [/mm] an. Das ist sichtlich kein Ergebnis, das man so auf Anhieb erreicht, aber eins, das prinzipiell erreichbar ist.

Das []unbestimmte Integral sieht zwar komplizierter aus, aber deutlich machbarer.

Und wie gesagt, Du bist auf einem guten Weg dahin.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]