matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungPartielle Integration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Partielle Integration
Partielle Integration < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:50 Sa 20.02.2010
Autor: fred937

Aufgabe
Berechnen Sie die Integrale (partielle Integration):
[mm] \integral_{}^{}{x^2*e^{-x} dx} [/mm]
Tip: Sie müssen nach der ersten partiellen Integration für das Restintegral noch einmal die "die zweite Stufe zünden".

Hallo erstmal an die netten Helfer!

Ich habe für [mm] f=x^{2} [/mm] , df= 2x dx und für [mm] dg=e^{-x} [/mm] dx , [mm] g=-e^{-x} [/mm]
Dann setzte ich alles ein:
[mm] \integral_{}^{}{x^{2}*e^{-x} dx} [/mm] = [mm] -e^{-x}*x^{2}-\integral_{}^{}{-e^{-x}*2x dx} [/mm]
Dann weiß ich nicht weiter, wie ist das mit der zweiten Stufe zu verstehen?
und am Ende soll I = [mm] -e^{-x} [/mm] (x² + 2x + 2) + C
rauskommen.

Vielen Dank für eure Bemühungen


        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 18:58 Sa 20.02.2010
Autor: schachuzipus

Hallo fred937,

> Berechnen Sie die Integrale (partielle Integration):
>  [mm]\integral_{}^{}{x^2*e^{-x} dx}[/mm]
>  Tip: Sie müssen nach der
> ersten partiellen Integration für das Restintegral noch
> einmal die "die zweite Stufe zünden".
>  Hallo erstmal an die netten Helfer!
>  
> Ich habe für [mm]f=x^{2}[/mm] , df= 2x dx und für [mm]dg=e^{-x}[/mm] dx ,
> [mm]g=-e^{-x}[/mm]
>  Dann setzte ich alles ein:
>  [mm]\integral_{}^{}{x^{2}*e^{-x} dx}[/mm] =
> [mm]-e^{-x}*x^{2}-\integral_{}^{}{-e^{-x}*2x dx}[/mm][ok]

Das hintere Integral kannst du noch ein wenig umschreiben, damit es etwas einfacher wird:

[mm] $=-x^2\cdot{}e^{-x}+2\cdot{}\red{\int{x\cdot{}e^{-x} \ dx}}$ [/mm]


>  Dann weiß ich nicht weiter, wie ist das mit der zweiten Stufe zu
> verstehen?

Das soll heißen, dass du für das rote Integral nochmal die partielle Integration anwenden musst, um es zu lösen ...

> und am Ende soll I = [mm]-e^{-x}[/mm] (x² + 2x + 2) + C
>  rauskommen.
>  
> Vielen Dank für eure Bemühungen
>  

Gruß

schachuzipus

Bezug
                
Bezug
Partielle Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:04 Sa 20.02.2010
Autor: fred937

Danke,
dann habe ich aus der zweiten Integration x * [mm] -e^{-x} [/mm] - [mm] e^{-x} [/mm] + C
raus.
Zusammen ergibt das dann: [mm] -e^{-x} [/mm] * [mm] x^{2} [/mm] + 2(x * [mm] -e^{-x} [/mm] - [mm] e^{-x}) [/mm]
und daraus:  [mm] -e^{-x} [/mm] * [mm] x^{2} [/mm] + 2x * [mm] -e^{-x} [/mm] -2 [mm] e^{-x} [/mm]
und daraus dann das Endergebis.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]