matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenPartielle Integration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Partielle Integration
Partielle Integration < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:57 Di 17.06.2008
Autor: AbraxasRishi

Aufgabe
[mm] \integral{\bruch{ln(x)}{x}dx} [/mm]


Hallo!

Ich blick bei der obigen Aufgabe, so einfach sie auch aussieht, absolut nicht durch. Würde mich über einen kleinen Tipp sehr freuen. :-)

Mein Ansatz wäre:

v' = [mm] \bruch{1}{x} [/mm]            v = ln(x)
u = ln(x)                           u'=  [mm] \bruch{1}{x} [/mm]

Der Punkt ist:" u'v  ist nicht leichter zu integrieren als v'u. "[verwirrt]

Vielen Dank im Voraus!

Gruß

Angelia

        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 20:02 Di 17.06.2008
Autor: schachuzipus

Hallo Angelika,

dies ist doch eher ein Paradebeispiel für eine Integration durch Substitution.

Ansatz: [mm] $u:=\ln(x)$, [/mm] damit [mm] $u'=\frac{du}{dx}=\frac{1}{x}$, [/mm] also $dx= ...$

Dann wird's kinderleicht ...


LG

schachuzipus

Bezug
        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Di 17.06.2008
Autor: rainerS

Hallo!

> [mm]\integral{\bruch{ln(x)}{x}dx}[/mm]
>  
>
> Hallo!
>  
> Ich blick bei der obigen Aufgabe, so einfach sie auch
> aussieht, absolut nicht durch. Würde mich über einen
> kleinen Tipp sehr freuen. :-)
>  
> Mein Ansatz wäre:
>  
> v' = [mm]\bruch{1}{x}[/mm]            v = ln(x)
>  u = ln(x)                           u'=  [mm]\bruch{1}{x}[/mm]
>  
> Der Punkt ist:" u'v  ist nicht leichter zu integrieren als
> v'u. "[verwirrt]

Das ist manchmal so, und trotzdem hilft's weiter! Schreibe die partielle Integration aus:

[mm] \integral{\bruch{\ln(x)}{x}dx} = \ln(x)*\ln(x) - \integral{\bruch{\ln(x)}{x}dx} [/mm]

Also:

[mm] \integral{\bruch{\ln(x)}{x}dx} = \bruch{1}{2} \ln(x)*\ln(x) [/mm]

Viele Grüße
   Rainer

Bezug
                
Bezug
Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:23 Di 17.06.2008
Autor: AbraxasRishi

Hallo Rainer und Schachuzipus!

Vielen Dank für eure Hilfe!

Darf ich nochmal fragen wie du von


$ [mm] \integral{\bruch{\ln(x)}{x}dx} [/mm] = [mm] \ln(x)\cdot{}\ln(x) [/mm] - [mm] \integral{\bruch{\ln(x)}{x}dx} [/mm] $

auf

$ [mm] \integral{\bruch{\ln(x)}{x}dx} [/mm] = [mm] \bruch{1}{2} \ln(x)\cdot{}\ln(x) [/mm] $

kommst? Kann dir da nicht folgen.

Danke für die Geduld!   :-)

Gruß

Angelika

Bezug
                        
Bezug
Partielle Integration: umgeformt
Status: (Antwort) fertig Status 
Datum: 20:25 Di 17.06.2008
Autor: Loddar

Hallo Angelika!


Rainer hat bei der Gleichung

[mm] $$\integral{\bruch{\ln(x)}{x} \ dx} [/mm] \ = \ [mm] \ln^2(x)-\integral{\bruch{\ln(x)}{x} \ dx}$$ [/mm]

auf beiden Seiten $+ \ [mm] \integral{\bruch{\ln(x)}{x} \ dx}$ [/mm] gerechnet und anschließend durch 2 dividiert.


Gruß
Loddar


Bezug
                                
Bezug
Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:48 Di 17.06.2008
Autor: AbraxasRishi

Hallo Loddar!

Tut mir leid ich kapierts nicht. Also ich habs jetzt so verstanden:

[mm]\integral{\bruch{ln(x)}{x}dx}=ln^2(x)-\integral{\bruch{ln(x)}x}dx} /+\integral{\bruch{ln(x)}{x}dx}[/mm]

[mm]\integral{\bruch{ln(x)}{x}dx}+\integral{\bruch{ln(x)}{x}dx}=ln^2(x) [/mm]  /:2

[mm]\bruch{\integral{\bruch{ln(x)}{x}dx}+\integral{\bruch{ln(x)}{x}dx}}{2}=\bruch{ln^2(x)}{2}[/mm]

Und wie geht es dann weiter? [verwirrt]

Danke für die Geduld!

Gruß

Angelika



Bezug
                                        
Bezug
Partielle Integration: Obstsalat
Status: (Antwort) fertig Status 
Datum: 20:50 Di 17.06.2008
Autor: Loddar

Hallo Angelika!


Du hast doch nunmehr auf der linken Seite "(Apfelbaum + Apfelbaum) durch 2 = 2 Apfelbäume / 2 = 1 Apfelbaum" stehen. ;-)


Gruß
Loddar


Bezug
                                                
Bezug
Partielle Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:00 Di 17.06.2008
Autor: AbraxasRishi

Hallo Loddar!


Wie konnte ich das übersehen! Vielen dank für deine "anschauliche " Erklärung!!  [lichtaufgegangen]

Gruß

Angelika

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]