Partielle Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:32 Di 18.03.2008 | Autor: | MrFair |
Aufgabe | Berechnen sie die folgenden Integrale:
a) [mm] \integral_{0}^{2}{x^3*e^{-x^2} dx} [/mm] |
Hallo!
Ich bin gerade dabei ein paar Klausuraufgaben zur Vorbereitung zu rechnen und bin dabei auf diese Aufgabe gestossen. Leider ist mir überhaupt nicht klar, wie ich sie lösen soll. In der Musterlösung steht, man soll es per partielle Integration machen (was auch der einzige Lösungsweg zu seien scheint) und es steht folgender Lösungsweg dabei:
[mm] \integral_{0}^{2}{x^3*e^{-x^2} dx} = [ -\bruch{1}{2}+x^2+e^{-x^2} ]_{0}^{2} + \integral_{0}^{2}{x*e^{-x^2} dx} = ... [/mm]
Danach wird dann direkt zum Ergebnis gesprungen.
Leider ist mir überhaupt nicht klar, wieso man hier so partiell integrieren kann. Wie man [mm] \integral_{0}^{2}{x*e^{-x^2} dx} [/mm] integriert, ist mir auch nicht klar.
Das Problem was ich hab, ist folgendes:
Zur partiellen Integration muss ich ja von einem der beiden Multiplikanten die Ableitung bilden und den Anderen integrieren.
Die Möglichkeit, [mm] e^{-x^2} [/mm] zu integrieren fällt ja weg, dies ist ja nicht möglich (zumindest wäre mir keine Lösung bekannt und ich meine, mein Tutor hätte das auch so zu uns gesagt).
Also bleibt ja nur noch übrig, [mm] x^3 [/mm] zu integrieren und [mm] e^{-x^2} [/mm] abzuleiten. Damit dreht man sich aber im Kreis, da man per partielle Integration dann das Integral [mm] \integral{-\bruch{1}{2}x^5*e^{-x^2} dx} [/mm] erhält, was die ganze Sache noch schlimmer macht.
Für mich sieht die Musterlösung so aus, als hätte man da fälscherlicherweise das Integral von [mm] e^{-x^2} [/mm] mit [mm] \bruch{1}{2*x}*e^{-x^2} [/mm] gleichgesetzt, denn so kommt man auf das angegebene Ergebnis. Aber da würde man doch etwas falsches machen?
Ich habe das dann auch mal per TI Voyage 200 (sehr leistungsfähiger Taschenrechner) überprüft und der sagt mir merkwürdigerweise auch, dass der Musterlösungweg so stimmen würde.
Es wäre sehr nett, wenn mir da jemand helfen könnte.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:37 Di 18.03.2008 | Autor: | Teufel |
Hi!
Das Problem ist, dass nich nur partiell integriert wurde. Setzt mal x²=u und versuche es nochmal :)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:16 Di 18.03.2008 | Autor: | MrFair |
Danke, so hats geklappt.
|
|
|
|