matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenPartielle Integr/Differti.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Partielle Differentialgleichungen" - Partielle Integr/Differti.
Partielle Integr/Differti. < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Integr/Differti.: Idee, Korrektur
Status: (Frage) überfällig Status 
Datum: 14:48 So 06.05.2012
Autor: nobodon

Aufgabe
Es sei f: [a,b]x[a,b]--> C (komplexe Zahlen) stetig und
[mm] $f_1(x,y):=\frac{df}{dx}(x,y) [/mm] $ existiere, also ableitung nach der 1. Var., und sei stetig. Zeige:

$I(x) = [mm] \int_{a}^{x} [/mm] f(x,y) dy$ ist diffbar auf (a,b) und es gilt
$I'(x) = f(x,x) + [mm] \int_{a}^{x} f_1(x,y) [/mm] dy$


Hey Leute,


Mein (falscher) ansatz: Sei [mm] $F_2$ [/mm] eine Stammfunktion nach der 2. Var

$I'(x) = [mm] d(\int_{a}^{x} [/mm] f(x,y) dy)/dx = [mm] \frac{dF_2}{dx}(x,x) [/mm] - [mm] \frac{dF_2}{dx}(x,a) [/mm] = f(x,x)  - [mm] \frac{dF_2}{dx}(x,a)$ [/mm] und nun?
2. Gleichheit: habe lediglich HDI angewendet und f nach y integriert

Gruß

        
Bezug
Partielle Integr/Differti.: 'Cmon
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:35 Mo 07.05.2012
Autor: nobodon

wirklich niemand ?

Bezug
                
Bezug
Partielle Integr/Differti.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:45 Mo 07.05.2012
Autor: nobodon

wirklich niemand, dachte die aufgabe ist halbwegs einfach..........

Bezug
        
Bezug
Partielle Integr/Differti.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mi 09.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]